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Electronic transport through ballistic chaotic cavities: Reflection symmetry, direct processes,
and symmetry breaking
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We extend previous studies on transport through ballistic chaotic cavities with spatial left-right~LR! reflec-
tion symmetry to include the presence of direct processes. We first analyze fully LR-symmetric systems in the
presence of direct processes and compare the distributionw(T) of the transmission coefficientT with that for
an asymmetric cavity with the same ‘‘optical’’S matrix. We then study the problem of ‘‘external mixing’’ of
the symmetry caused by an asymmetric coupling of the cavity to the outside. We first consider the case where
symmetry breaking arises because two symmetrically positioned waveguides are coupled to the cavity by
means of asymmetric tunnel barriers. Although this system is asymmetric with respect to the LR operation,
there is an effect of the symmetry of the cavity it was constructed from. Second, we break LR symmetry in the
absence of direct processes by asymmetrically positioning the two waveguides and compare the results with
those for the completely asymmetric case.
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I. INTRODUCTION

The problem of chaotic wave scattering is of great inter
in various branches of physics, such as optics, nuclear,
soscopic, and microwave physics. The study of quantu
mechanical scattering problems whose classical dynamic
chaotic has been further motivated by recent experiment
quantum-electronic transport in microstructures consisting
a cavity connected to leads@1#. We know that symmetries
have very interesting effects on the properties of the elec
conductance in mesoscopic systems: time-reversal and
rotational symmetries@2,3#, as well as spatial-reflection sym
metries@4,5# have been studied in the literature.

The problem of electronic transport through asymme
~AS! chaotic cavities is addressed in detail in Ref.@6# in an
independent-electron approximation. In that reference,
possibility of direct processes due to the presence of s
paths is accounted for by specifying the average, or opticaS
matrix ^S& within an information-theoretic approach. Th
statistical distribution for theSmatrix is known as Poisson’
kernel, in whicĥ S& is a parameter. When̂S&50, i.e., in the
absence of direct processes, the statistical distribution
duces to the invariant measure for the appropriate univer
ity class.

Microstructures with reflection symmetry and a chao
classical dynamics are studied in Refs.@4# and @5#. The
analysis is performed in the absence of direct processe
that the statistical distribution of theSmatrix is the invariant
measure for the universality class in question and the
evant spatial symmetry: the latter is a symmetry of thefull
system under consideration, i.e., the cavity plus the two le

*Also at Instituto de Fı´sica, Universidad Nacional Auto´noma de
México, 01000 Me´xico DF, Mexico.
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that connect the cavity to the outside.
One purpose of the present paper is to extend the stud

Refs.@4# and@5# to include the presence of direct process
We consider two-dimensional systems with spinless partic
and concentrate on left-right~LR! symmetry only, i.e., sym-
metry under reflection through an axis perpendicular to
current. We also restrict the analysis to time-revers
invariant ~TRI! problems. One particular way of inducin
direct reflections is by adding potential barriers between
symmetrically positioned waveguidesand the cavity. If the
two barriers are equal, the system is fully LR symmetric;
the barriers are different, we have a LR-symmetric cav
coupledasymmetricallyto the outside: using the jargon o
nuclear physicists@7#, we shall refer to this type of symmetr
breaking as ‘‘external mixing,’’ with an obvious meanin
An interesting question, amenable to experimental obse
tion, is that of the interplay between the symmetry of t
cavity and external mixing in the statistical distribution
the conductance of such a structure: the study of that in
play is the second main purpose of this paper. From an
perimental point of view, microwave cavities@8# and acous-
tic systems@9# might represent good candidates by which
study these questions.

That interplay may also be there and have interesting
fects when̂ S&50, as in the case of a LR-symmetric cavi
coupled to the outside by two waveguides free of poten
barriers butasymetrically located. This problem can be ad
dressed from the point of view of the systems described
the preceding paragraph in the following way. One m
think of a LR-symmetric cavity coupled to the outside b
four waveguides, also placed symmetrically. We can br
the symmetry by providing the two waveguides on the rig
hand side of the cavity, say, with identical barriers. The d
sired problem is then approached in the limit of impenetra
barriers.

This paper is organized as follows. In order to make
©2000 The American Physical Society05-1
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paper reasonably self-contained, we summarize in the
section a number of concepts that we shall be using throu
out the paper, such as the invariant measure and Poiss
kernel forSmatrices and their application to chaotic scatt
ing in AS cavities, and the invariant measure for L
symmetric systems. Section III deals with the problem
fully LR-symmetric systems in the presence of direct p
cesses. The distribution of the conductance is calculated
the particular case of one open channel in each lead a
diagonal optical matrix~implying direct reflections!, and
contrasted with the one obtained for an AS chaotic cav
and the same optical matrix̂S&. Different barriers added to
the two waveguides of an otherwise fully LR-symmetric sy
tem with no direct processes give rise to direct reflectio
and external mixing: the problem is studied in Sec. I
Again, the conductance distribution is computed for the o
channel case and contrasted with the one obtained for an
chaotic cavity with the same optical matrix^S&. The problem
of external mixing in a LR-symmetric cavity with asymetr
cally positioned leads and̂S&50 is addressed in Sec. V
The conductance distribution is calculated and compa
with the one arising from the invariant measure in the
case. Finally, for the sake of completeness, we includ
number of appendices where some of the results mentio
in the text are derived.

II. THE S MATRIX AND ITS STATISTICAL
DISTRIBUTION

A. The scattering problem in the absence of spatial
symmetries

A single-electron scattering problem can be described
the scattering matrixS, which in the stationary case relate
the outgoing-wave to the incoming-wave amplitudes@10#.
For a ballistic cavity connected to two leads, each withN
transverse propagating modes~see Fig. 1!, the S matrix is
n52N dimensional and has the structure

S5S r t 8

t r 8
D , ~2.1!

wherer, r 8 are theN3N reflection matrices~for incidence
from either lead! and t, t8 the corresponding transmissio
matrices.

FIG. 1. A ballistic chaotic cavity with scattering matrix given b
S0 connected to two waveguides by means of two barriers w
scattering matricesS1 andS2.
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From theSmatrix we can construct the total transmissi
coefficient, orspinless dimensionless conductance

T5tr~ tt†!, ~2.2!

which is proportional to the conductance of the cavity,

G5~2e2/h!T, ~2.3!

the factor 2 arising from the two spin directions.
In Dyson’s scheme@11# there are three basic symmet

classes. In the absence of any symmetry, the only restric
on S is unitarity, i.e.,

SS†5I , ~2.4!

resulting from the physical requirement of flux conservatio
This is the ‘‘unitary’’ case, also designated asb52. For
orthogonal symmetry, orb51, S is symmetric, i.e.,

S5ST, ~2.5!

because one has either time-reversal invariance~TRI! and
integral spin, or TRI, half-integral spin and rotational sym
metry. In the ‘‘symplectic’’ case (b54), S is self-dual be-
cause of TRI with half-integral spin and no rotational sym
metry. From now on we consider the scattering problem
‘‘spinless’’ electrons, so that the caseb54 will not be
touched upon.

A convenient parametrization of theS matrix is the polar
representation@12,13#

S5S v1 0

0 v2
D S 2A12t At

At A12t
D S v3 0

0 v4
D , ~2.6!

where t stands for theN-dimensional diagonal matrix o
eigenvalues ta (a51, . . . ,N) of the Hermitian matrix
tt†; v i ( i 51, . . . ,4) arearbitrary N3N unitary matrices
for b52, with the restrictionv35v1

T , v45v2
T for b51.

1. The invariant measure

When the classical dynamics of the system is chaotic
statistical analysis of the quantum-mechanical problem
called for. That analysis is performed in terms of ‘‘e
sembles’’ of physical systems, described mathematically
an ensemble ofSmatrices, endowed with a probability mea
sure. The starting point of such an analysis is the concep
invariant measure, which is a precise formulation of the in
tuitive notion ofequal a priori probabilitiesin the space of
scattering matrices.

The invariant measure, to be designated asdm (b)(S), is
invariant under the symmetry operation relevant to the u
versality class under consideration@11,14#, i.e.,

dm (b)~S!5dm (b)~U0SV0!. ~2.7!

Here,U0 ,V0 are arbitrary but fixed unitary matrices in th
unitary case, whileV05U0

T in the orthogonal one. Equatio
~2.7! defines the circular~orthogonal, unitary! ensembles
~COE, CUE!, for b51,2, respectively.

h
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2. Chaotic scattering by AS cavities

The information-theoretic approach of Refs.@15,16# leads
to the probability distribution known as Poisson’s kern
@6,14#:

dP^S&
(b)~S!5

@det~ I 2^S&^S&†!# (bn122b)/2

udet~ I 2S^S&†!ubn122b
dm (b)~S!,

~2.8!

where the invariant measure is assumed normalized, i.e

E dm (b)~S!51. ~2.9!

Here,n52N is the dimensionality of theSmatrix and^S& is
the averaged, oroptical, S matrix, which describes the
prompt response arising fromdirect processes.

In the absence of direct processes,^S&50 and Poisson’s
measure@Eq. ~2.8!# reduces to the invariant measure for t
universality class in question. In terms of the polar repres
tation, the invariant measure can be written as@17,18#

dm (b)~S!5p(b)~$t%!)
a

dta)
i

dm~v i !. ~2.10!

Here, the joint probability density of$t% is

p(b)~$t%!5Cb )
a,b

uta2tbub)
c

tc
(b22)/2, ~2.11!

Cb being a normalization constant anddm(v i) denoting the
invariant measure on the unitary groupU(N) for matrices
v i .

For ^S&Þ0, a useful construction of Poisson’s ensem
is given in Refs.@19,20#. Consider the system shown in Fi
1: it consists of a cavity described by then-dimensional scat-
tering matrixS0, connected to two leads by the tunnel ba
riers described by then3n scattering matrices

S15S r 1 t18

t1 r 18
D , ~2.12!

S25S r 2 t28

t2 r 28
D , ~2.13!

respectively. We bunch the two leads into a ‘‘superlead’’ a
construct the 2n32n scattering matrixSb

Sb5S r b tb8

tb r b8
D 5S r 1 0 t18 0

0 r 28 0 t2

t1 0 r 18 0

0 t28 0 r 2

D . ~2.14!

Here, the various blocks (r b , etc.! are n dimensional. The
scattering matrixS0 for the cavity can be written in terms o
the scattering matrix S for the full system $cavity
1barriers% as
01620
l
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S05
1

tb8
~S2r b!

1

I 2r b
†S

tb
† . ~2.15!

One can prove@14,16,19,20# that between the invariant mea
sures forS0 and forS we have the Jacobian

dm (b)~S0!5
@det~ I 2^S&^S&†!# (bn122b)/2

udet~ I 2S^S&†!ubn122b
dm (b)~S!.

~2.16!

Now, if the matrixS0 for the cavity is distributed according
to the invariant measure, i.e.,dm (b)(S0), the distribution of
the transformedS satisfies

dP~S!5dm (b)~S0! ~2.17!

and we obtain Eq.~2.8!, the opticalS being given by the
n-dimensional matrix

^S&5r b5S r 1 0

0 r 28
D . ~2.18!

The N51, b51 case. The T distribution. We now con-
sider the distribution of theSmatrix for the system shown in
Fig. 1 for the caseN51 andb51. The matricesS0 of the
ballistic cavity,S1 and S2 of the two tunnel barriers, andS
@related through Eq.~2.15!# are 232 and have the structur
~2.1! with t85t. In the polar representation~2.6! we have
three independent parameterst, f, c, where we have writ-
ten v15eif, v25eic. The range of variation of these pa
rameters is taken to be

tP@0,1#,
~2.19!

f,cP@0,2p#.

In terms of~2.19!, S can be written as

S5S r t

t r 8
D 5F2A12te2if Atei (f1c)

Atei (f1c) A12te2icG , ~2.20!

and the invariant measure of Eqs.~2.10! and ~2.11! as

dm (1)~S!5
dt

2At

df

2p

dc

2p
. ~2.21!

The distribution ofS is given by Poisson’s kernel, with
the opticalS matrix

^S&5r b5S r 1 0

0 r 28
D . ~2.22!

Substitutinĝ S& in Eq. ~2.8!, Poisson’s measure can be wri
ten as

dPr 1 ,r
28
~S!5

@~12ur 1u2!~12ur 28u
2!#3/2

u~12rr 1* !~12r 8r 28* !2t2r 1* r 28* u3
dm (1)~S!.

~2.23!
5-3
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By definition, the resulting distribution of the transmission coefficientT can be expressed as the integral

wr 1 ,r
28
~T!5E d~T2t!dPr 1 ,r

28
~S!. ~2.24!

For this distribution, Ref.@6# gives the expression

wr 1 ,r
28
~T!5

1

2AT
@~12ur 1u2!~12ur 28u

2!#3/2K 1

u~e2 iw1ur 1uA12T!~e2 ic1ur 28uA12T!2ur 1uur 28uTu3L
w,c

, ~2.25!
e

th

e

or
e.

e a

are
at
.,

, the

ion
, the

to
r

lt

es
e

s in

ri-
where^•••&w,c denotes an average over the variablesw and
c over the interval@0,2p#. Whenr 15r 2850, the above ex-
pression~2.25! reduces to

w0,0~T!5
1

2AT
, ~2.26!

as it should. Figure 2 below~Sec. III! shows with dotted
lines the evolution ofwr 1 ,r

28
(T) for r 15r 285^r & with the

parameter̂ r &, obtained from Eq.~2.25! by numerical inte-
gration. That distribution tends tod(T) as ^r &→21.

To further illustrate the physics resulting from th
S-matrix distribution~2.23! we analyze the special caser 1
50, so that the right barrier is the only one present. For
case, Eqs.~2.23! and ~2.21! give, for the joint probability
distribution of the parameterst,f,c, the expression

dP0,r
28
~S!5

~12ur 28u
2!3/2

u12A12te2icr 28* u3

dt

2At

df

2p

dc

2p
.

~2.27!

FIG. 2. Shown with a heavy line is the evolution of the dist
bution w^r &(T) of Eq. ~3.11! with the parameter̂r &52cose for a
chaotic cavity with full LR symmetry. Cases e
5p/2,p/4,p/8,p/32 are shown in~a!,~b!,~c!,~d!, respectively. The
dotted lines show for comparison theT distribution corresponding
to an AS cavity with two identical barriers.
01620
is

We first notice that the angular variablef is uniformly dis-
tributed for all r 28 . In this particular case theT probability
density of Eq.~2.25! can be integrated analytically, to giv
@6#

w0,r
28
~T!5

~12ur 28u
2!3/2

2AT
2F1@3/2;3/2;1;ur 28u

2~12T!#,

~2.28!

2F1 being a hypergeometric function@21#.
As a check, we consider two limiting situations. First, f

r 2850 we have a ballistic cavity without prompt respons
The probability distribution forS, dP0,0(S) @see Eq.~2.27!#,
goes back to the invariant measure~2.21!, as it should. Sec-
ond, we obstruct the right lead by making the barrier ther
perfect reflector. As a result,r 28521 and it can be shown
~see Appendix A! that dP0,r

28
(S) reduces to

dP0,21~S!5d~t!dt
df

2p

1

2 FdS c2
p

2 D1dS c23
p

2 D Gdc,

~2.29!

where the angles in the arguments of the delta functions
defined modulo 2p. We see from the above expression th
the distribution oft is a one-sided delta function at zero, i.e

w~T!5d~T!, ~2.30!

so that the transmission tends to zero, as expected. Also
distribution ofc consists of delta functions centered atp/2
and 3p/2, so as to ensure the vanishing of the wave funct
at the impenetrable barrier. In contrast, as already noted
variable f is uniformly distributed from 0 to 2p. In this
limiting case we end up with a ballistic cavity connected
just one lead: thusthe resulting one-dimensional S matrix
52e2if is distributed according to the invariant measure.

Now we go back to the intermediate case in whichr 28 in
Eq. ~2.28! is real and21,r 28,0. We show in Fig. 5 below
~Sec. IV! with dotted lines the evolution of theT distribution
for several values ofr 28 , obtained from the analytical resu
~2.28!.

B. The scattering problem for TRI, LR-symmetric systems

In the presence of additional symmetries, for fixed valu
for all quantum numbers of the full symmetry group th
invariant ensemble is one of the three circular ensemble
5-4
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Dyson’s scheme. Thus for reflection-symmetric systemsS is
block diagonal in a basis of definite parity with respect
reflections, with a circular ensemble in each block@4,5#.

For a system with TRI and LR symmetry the general fo
of the S matrix is

S5S r t

t r D , ~2.31!

with

r 5r T ~2.32a!

t5tT. ~2.32b!

All the matrices with the structure~2.31! can be simulta-
neoulsy brought to block-diagonal form using the rotati
matrix

R05
1

A2
S I N I N

2I N I N
D , ~2.33!

whereI N is theN-dimensional unit matrix. In fact,

S85R0SR0
T5Fs(1) 0

0 s(2)G , ~2.34!

with

s(6)5r 6t. ~2.35!

SinceS is unitary and symmetric, so areS8 and the twoN
3N matricess(6). While S has the restricted form~2.31!,
s(6) are themost general N3N unitary and symmetric, i.e.,
b51, matrices.

1. The invariant measure

The invariant measure forS matrices with the structure
~2.31! was found in Refs.@4,5#, based on the consideratio
that two arbitrary unitary symmetric matricess(6) can gen-
erate the most general unitaryS matrix with the structure
~2.31!. The invariant measure for matrices of the form~2.31!
can be written as

dm̂ (1)~S!5dm (1)~s(1)!dm (1)~s(2)!, ~2.36!

wheredm (1)(s(6)) is the invariant measure discussed abo
for unitary and symmetric matrices (b51) in the absence o
spatial symmetries.

2. Chaotic scattering by systems with full LR symmetry
in the absence of direct processes

It has been found@5# that single-electron scattering b
classically chaotic cavities with LR symmetry and in t
absence of direct processes is well described by the inva
measure discussed above.

The N51 case. The T distribution. Reference@4# finds the
distribution of the total transmission coefficientT for the
01620
e

nt

one-channel case (N51) arising from the invariant measur
~2.36! as

w~T!5
1

pAT~12T!
. ~2.37!

III. SYSTEMS WITH TRI AND FULL LR SYMMETRY IN
THE PRESENCE OF DIRECT PROCESSES

In this section we study a TRI system with full LR sym
metry, just as in Sec. II B, but now admitting the possibili
of direct processes. For the systems analyzed in Sec. II B
average~or optical! S matrix ^S& vanishes, indicating the
absence of a prompt response, whereas now^S&Þ0.

The S matrix has the structure of Eq.~2.31!, and so does
^S&, i.e.,

^S&5S ^r & ^t&

^t& ^r &
D , ~3.1!

with

^r &5^r &T, ~3.2a!

^t&5^t&T ~3.2b!

being N3N blocks. BothS and ^S& can be brought to a
block-diagonal form by the rotation matrix~2.33!: Sbecomes
S8 of Eq. ~2.34! and ^S& becomes

^S8&5R0^S&R0
T5F ^s(1)& 0

0 ^s(2)&
G . ~3.3!

As we noticed right below Eq.~2.35!, s(6) are themost
general N3N unitary and symmetricmatrices; they thus be
long to the b51 universality class. Their distribution i
given by two statistically independent Poisson kernels of
form ~2.8!, with ^s(6)& as their optical matrices. Denoting b
dP̂^S&(S) the S matrix distribution, we have

dP̂^S&~S!5dP^s(1)&~s(1)!dP^s(2)&~s(2)!, ~3.4!

where

dP^s(6)&~s(6)!

5
@det~ I N2^s(6)&^s(6)&†!# (N11)/2

udet~ I N2s(6)^s(6)&†!uN11
dm (1)~s(6)!.

~3.5!

We can thus writedP̂^S&(S) as
5-5
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dP̂^S&~S!5
@det~ I N2^s(1)&^s(1)&†!# (N11)/2

udet~ I N2s(1)^s(1)&†!uN11

@det~ I N2^s(2)&^s(2)&†!# (N11)/2

udet~ I N2s(2)^s(2)&†!uN11
dm̂ (1)~S! ~3.6!
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wheredm̂ (1)(S) is defined in Eq.~2.36!.
The special case of no direct transmission,^t&50, i.e.,

^S&5S ^r & 0

0 ^r &
D , ~3.7!

can be written as

dP̂^r &~S!5
@det~ I N2^r &^r &†!#N11

udet~ I N2s(1)^r &†!uN11udet~ I N2s(2)^r &†!uN11

3dm̂ (1)~S!. ~3.8!

Physically, this case could be realized by fully LR
symmetric structures with no direct processes, to which id
tical barriers~with theb51 symmetry! are added in the two
leads, each with a reflection matrix@see Eq.~2.18!#

r 15r 285^r &. ~3.9!

The situation is illustrated in Fig. 3 ahead but with equ
barriers.

The NÄ1 case. TheT distribution.

In this case, Eq.~3.8! reduces to

dP̂^r &~S!5
@12^r &^r &* #2

u12s(1)^r &* u2u12s(2)^r &* u2
dm̂ (1)~S!,

~3.10!

where^r & ands(6) are now 131 matrices, i.e., just comple
numbers. The distribution ofT can be obtained from the
general expression~2.24!. For ^r & real, some of the relevan
steps are found in Appendix B, the final result being

w^r &~T!5
1

pAT~12T!

~11^r &2!~12^r &2!

~11^r &2!224^r &2~12T!
.

~3.11!

FIG. 3. A ballistic cavity with reflection symmetry described b
the matrixS0, connected to two waveguides by means of two b
riers described byS1 ,S2. The barriers give rise to direct process
and, if they are different, the LR symmetry of the full system
broken~external mixing!.
01620
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The distribution~3.11! is plotted in Fig. 2 for several val-
ues of^r & and compared, in the same figure, with the dis
bution corresponding to an AS cavity with the same^S&, as
given by Eq.~2.25!.

For ^r &50, the distribution of Eq.~3.11! reduces to that
of Eq. ~2.37!, which is symmetric with respect toT5 1

2 , so
thatT andR512T are identically distributed; this feature i
lost when^r &Þ0, as smallT’s become more probable. A
^r &→21, both distributions shown in the figure~i.e., for
LR-symmetric and AS systems! tend tod(T).

IV. BREAKING THE REFLECTION SYMMETRY OF
CAVITIES BY DIRECT PROCESSES

In this section we study a TRI configuration consisting
a ballistic cavity with LR symmetry and scattering matr
S0, connected to two symmetrically positioned waveguid
by means of barriers described byS1 andS2, respectively; in
general, the barriers are allowed to be different. This
rangement introduces direct reflections and abreakdown of
the reflection symmetry~see Fig. 3!. As a result, while the
scattering matrixS0 of the cavity plus the symmetrically po
sitioned waveguides, but not including the barriers, has
restricted structure~2.31!, ~2.32!, the scattering matrixS of
the total system including the barriers has the more gen
form ~2.1!, ~2.5!. Now, S is generated fromS0 through the
inverse of the relation~2.15!; thus, varyingS0 across its
manifold of independent parameters, but keeping the barr
fixed, generates a matrixS that varies over a manifold with
the same dimensionality. In what follows we restrict ou
selves to the one-channel case (N51) in each lead. The
matricesS0 can be expressed in terms oftwo independent
continuous parameters~plus a discrete parameters), as in
Eq. ~4.9! below, whileS has the more general form~2.20!;
thus there should be an algebraic relation connecting
three continuous parameterst,f,c appearing in the latter
equation.

We wantS0 to be distributed according to the invaria
measuredm̂ (1)(S0). In principle, the transformation betwee
S0 andS ~for fixed S1 andS2) defines uniquely the resulting
statistical distribution ofS, to be calleddP̂(S) @see Eq.
~4.21!#; for that purpose one could find the Jacobian of t
transformation relatingS to S0, both matrices being subjec
to the restrictions explained in the previous paragraph.
what follows, though, we find it convenient to compu
dP̂(S) proceeding along a simpler route, taking advantage
the Jacobian betweenunrestricted Smatrices that we already
know from Eq.~2.16!. In fact, the measuredm̂ (1)(S0) can be
first expressed as the measuredm (1)(S0) of unrestricted S0
matrices of the form of Eq.~4.5! below times the appropriate
delta functions that provide the required restriction@see Eq.
~4.6!# among the three parameterst0 ,f0 ,c0. Next, Eq.

-
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~2.16! expressesdm (1)(S0) in terms ofdm (1)(S), the factor
in front of dm (1)(S) in Eq. ~2.16! being the Jacobian of th
transformation from unrestrictedS0 to unrestrictedS matri-
ces. Finally, the identity~4.21! gives the required distribution
dP̂(S) for the S matrices. We proceed to implement th
scheme in detail.

The relationship between the scattering matrixS0 for the
cavity and the matrixS for the full system is given by Eq
~2.15!, with

tb5tb85S t1 0

0 t2
D , ~4.1!

r b5S r 1 0

0 r 28
D , r b85S r 18 0

0 r 2
D . ~4.2!

Here all the matrices are two-dimensional, so that the vari
entries are just complex numbers. We thus have

S05tb
21~S2r b!

1

I 22r b
†S

tb
†. ~4.3!

The matrixShas the structure~2.20!, while S0 has the struc-
ture ~2.31!, i.e.,

S05S r 0 t0

t0 r 0
D . ~4.4!

It will be useful to write S0 of Eq. ~4.4! in the polar
representation~2.20! as

S05F2A12t0e2if0 At0ei (f01c0)

At0ei (f01c0) A12t0e2ic0
G . ~4.5!

However, the three parameterst0 , f0, andc0 are not inde-
pendent. In fact, the structure ofS0 given in Eq.~4.4! implies
a relationship between the two anglesf0 andc0, i.e.,

e2ic052e2if0, ~4.6!

or, taking the square root on both sides

eic05 iseif0, ~4.7!

wheres561. Equivalently,

c05f01s
p

2
, mod~2p!. ~4.8!

The most general form ofS0 is thus

S052FA12t0 isAt0

isAt0 A12t0
Ge2if0, ~4.9!

written in terms of the independent parameterst0 , f0 and
the discrete variables, which have the range of variation

t0P@0,1#, ~4.10a!
01620
s

f0P@0,2p#, ~4.10b!

s561. ~4.10c!

From Eqs.~2.33!–~2.35!, the matrixS0 can be diagonal-
ized by ap/4 rotation to give

S085Feiu0
(1)

0

0 eiu0
(2)G , ~4.11!

where

eiu0
(6)

5r 06t052e2if06 isb0 ~4.12!

and

b05tan21A t0

12t0
, 2

p

2
<b0<

p

2
. ~4.13!

With the range of variation~4.10! for t0 , f0, ands, eiu0
(1)

and eiu0
(2)

cover twice the torus defined by the two angle
u0

(1) , u0
(2) .

Equation~4.12! is a transformation from the paramete
t0 , f0, ands to the parametersu0

(1) ,u0
(2) , whose Jacobian

can be written as

1

2

du0
(1)

2p

du0
(2)

2p
5

1

2

dt0

pAt0~12t0!

df0

2p
. ~4.14!

Both sides of this last equation integrate to 1 if the left-ha
side is integrated in the regionu0

(1) ,u0
(2)P@0,2p# and mul-

tiplied by 2 to account for the fact that the region is visit
twice, and the right-hand side is integrated in the reg
specified by Eq.~4.10!.

According to Eq.~2.36!, the left-hand side of Eq.~4.14!
represents the invariant measure forS0 matrices with LR
symmetry. A functionf (t0 ,f0 ,s) can be translated into a
function f̃ (u0

(1) ,u0
(2)) using the transformation~4.12!; its av-

erage over theS0 invariant measure can thus be written a

E
0

2p du0
(1)

2p E
0

2p du0
(2)

2p
f̃ ~u0

(1) ,u0
(2)!

5
1

2 (
s561

E
0

1 dt0

pAt0~12t0!
E

0

2p df0

2p
f ~t0 ,f0 ,s!.

~4.15!

Here, on the left-hand side we integrate over the to
u0

(1),u0
(2) only once. Suppose now that we are given a fun

tion F(t0 ,f0 ,c0)5F8(t0 ,f0 ,eic0) of the three parameters
appearing in Eq.~4.5! and we want to compute its averag
over the above measure. First, we make use of Eq.~4.7! to
eliminatec0 and write

F~t0 ,f0 ,c0!5F8~t0 ,f0 ,eic0!5F8~t0 ,f0 ,iseif0!

5 f ~t0 ,f0 ,s!5 f̃ ~u0
(1) ,u0

(2)!, ~4.16!
5-7
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where f (t0 ,f0 ,s) and f̃ (u0
(1) ,u0

(2)), have the same mean
ing as in Eq.~4.15! above. The average of this function ca
thus be written as in~4.15! and subsequently as

1

2 (
s561

E
0

1 dt0

pAt0~12t0!
E

0

2p df0

2p
F8~t0 ,f0 ,iseif0!

5
1

2E0

1 dt0

pAt0~12t0!
E

0

2p df0

2p E
0

2p

dc0FdS c02f02
p

2 D
1dS c02f023

p

2 D GF~t0 ,f0 ,c0!, ~4.17!

where we have used Eq.~4.8!. Comparing the left hand-sid
of Eq. ~4.15! to the right-hand side of Eq.~4.17! we thus
write

du0
(1)

2p

du0
(2)

2p
;

2FdS c02f02
p

2 D1dS c02f023
p

2 D G
A12t0

3
dt0

2At0

df0

2p

dc0

2p
, ~4.18!

where the symbol; indicates that the two measures a
equivalent when the left- and right-hand sides are used
integrate the functionsf̃ (u0

(1) ,u0
(2)) and F(t0 ,f0 ,c0), re-

spectively, defined above. Obviously, the angles in the ar
ment of the delta functions above are defined modulo 2p. As
we have already noticed, the left-hand side of Eq.~4.18! is
the invariant measuredm̂ (1)(S0) for scattering matricesS0 of
the form~4.11!, i.e., for a LR-symmetric cavity. On the othe
hand, Eq.~2.21! shows that the last line of Eq.~4.18! is the
is

01620
to

u-

invariant measuredm (1)(S0) for scattering matricesS0 of the
more general form~4.5!. The relationship between the tw
measures is thus

dm̂ (1)~S0!;

2FdS c02f02
p

2 D1dS c02f023
p

2 D G
A12t0

3dm (1)~S0!. ~4.19!

Here, the delta functions restrict the space of unitary a
symmetric matrices to the subspace of matrices of the fo
~4.9!.

As was explained at the beginning of this section, we n
expressdm (1)(S0) in terms of dm (1)(S) using Eq. ~2.16!.
That equation reads, for the present case,

dm (1)~S0!5
@det~ I 22r br b

†!#3/2

udet~ I 22Srb
†!u3

dm (1)~S!. ~4.20!

We substitute this last equation into Eq.~4.19! and use Eq.
~2.21! to expressdm (1)(S) in the polar representation. W
also note that the measuredm̂ (1)(S0) appearing on the left-
hand side of Eq.~4.19!, i.e., the differential probability asso
ciated with the matricesS0 @having the form~4.4!# for the
LR-symmetric cavity, must coincide with the differentia
probability dP̂r b

(S) we are looking for, associated with th
transformed matricesS @having the form~2.20!, but with the
appropriate restrictions#, i.e.,

dP̂r b
~S!5dm̂ (1)~S0!. ~4.21!

We thus have
dP̂r b
~S!;2

dS c02f02
p

2 D1dS c02f023
p

2 D
A12t0

@det~ I 22r br b
†!#3/2

udet~ I 22Srb
†!u3

dt

2At

df

2p

dc

2p
. ~4.22!
It remains to express the variablesc0 ,f0 ,t0 appearing in
the delta-function arguments in terms ofc,f,t. This is done
in Appendix C for the particular case in which barrier 1
transparent, so that its scattering matrixS1 of Eq. ~2.12! is
the Pauli matrixsx , and barrier 2 is described by Eq.~2.13!
with real matrix elements. The result is

dP̂0,r
28
~S!;pr

28
~t,f,c!dtdfdc, ~4.23!

with
pr
28
~t,f,c!5

~12r 28
2!3/2uA12t2r 28e

2ifu

~2p!2AtuA12t~12r 28
2!2r 28te2ifu2

3FdS c2f2a~f!2
p

2 D
1dS c2f2a~f!23

p

2 D G , ~4.24!

a(f) being given by Eq.~C7!. We recall that the angles in
the arguments of the delta functions are defined modulo 2p.
5-8
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As a first check, setr 2850, corresponding to the case o
no barriers. We obtain

dP̂0,0~S!;
dt

pAt~12t!

df

2p

1

2 FdS c2f2
p

2 D
1dS c2f23

p

2 D Gdc. ~4.25!

Thanks to the delta functions, we recover the situation of
symmetry. As expected, the right-hand side of Eq.~4.25! is
the invariant measure defined for that symmetry, Eq.~4.18!.
As a second check, we analyze the caser 28→21, which
corresponds to obstructing the waveguide on the right.
show in Appendix D that Eq.~4.23! gives in this case

dP̂0,21~S!;d~t!dt
df

2p

1

2 FdS c2
p

2 D1dS c23
p

2 D Gdc.

~4.26!

The conductance distribution reduces to a one-sided d
function at zero, as it should. Notice that the variablef is
uniformly distributed in the two extreme casesr 2850 and
r 28521; this is not so for an arbitrary value ofr 28 . In the
limiting caser 28521 we end up with a LR-symmetric ba
listic cavity connected to just one lead~see Fig. 4!: the re-
sulting one-dimensionalS matrix, i.e.,r 52e2if, is distrib-
uted according to theinvariant measure: there is thusno
effect left of the LR symmetry of the cavity. In fact, the right-
hand side of Eq.~4.26! is identical to that of Sec. II A 2, Eq
~2.29!, for an AS cavity with the right-hand waveguide o
structed. As we shall see later on, in Sec. V, this is a pe
liarity of the one-channel case.

To get the joint distribution oft andf for arbitraryr 28 we
integrate Eq.~4.24! over c. We find

qr
28
~t,f!5

1

2p2

~12r 28
2!3/2

At

uA12t2r 28e
2ifu

uA12t~12r 28
2!2r 28te2ifu2

.

~4.27!

The T5t distribution w(T) is obtained by integrating
qr

28
(t,f) over f. Figure 5 shows~solid lines! the evolution

of w(T) with the parameterr 28 . The peak in the solid curve
in Fig. 5 seems to arise from the peak that is atT51 origi-

FIG. 4. A ballistic chaotic cavity with reflection symmetry con
nected to just one lead, supporting one open channel, in the abs
of direct processes. The one-dimensionalSmatrix r 52e2if is dis-
tributed according to the invariant measure.
01620
e

lta

u-

nally ~i.e., for r 2850); that peak then ‘‘travels’’ towardsT
50 as ur 28u increases. In the same figure we compare t
sequence of distributions with those corresponding to an
cavity ~dotted lines! with the samer 28 . In the former casethe
system ‘‘remembers’’ in a rather conspicuous way that,
though the resulting configuration is asymmetric, the cav
has LR symmetry.

V. BREAKING THE REFLECTION SYMMETRY OF
CAVITIES WITH AN ASYMMETRIC POSITION

OF THE WAVEGUIDES

In the present section we study the effect of external m
ing of LR symmetry in the absence of direct processes,
for ^S&50: the problem will be that of a LR-symmetric cav
ity connected to two asymmetrically positioned waveguid
in the absence of barriers. We proceed as follows. We
consider the LR-symmetric cavity connected to four sy
metrically positioned waveguides~each supporting one ope
channel! by means of four, in general different, barriers,
shown in Fig. 6. The two barriers on the left-hand side
then removed, while those on the right are made perfect
flectors.

We call S0 the matrix associated with the LR-symmetr

nce

FIG. 5. The solid line shows the evolution of theT distribution
obtained by numerical integration overf of Eq. ~4.27! for a LR-
symmetric cavity and one barrier defined byr 2852cose, as a func-
tion of the parametere. Panels~a!, ~b!, ~c!, ~d! show casese
5p/2,p/4,p/8,p/32, respectively. The dotted lines show, for com
parison, the distributions that correspond to an AS cavity and
same barrier as for the corresponding heavy lines.

FIG. 6. A ballistic cavity connected to four waveguides sym
metrically located, by means of four, in principle different, barrie
5-9
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cavity connected to the four symmetrically locat
waveguides in theabsenceof barriers. The matrixS in the
presence of the four barriers is then given by Eq.~2.15!, i.e.,

S5r b1tb8
1

I 42S0r b8
S0tb , ~5.1!

where

tb5tb85S t1 0 0 0

0 t2 0 0

0 0 t3 0

0 0 0 t4

D ~5.2!

r b5S r 1 0 0 0

0 r 2 0 0

0 0 r 38 0

0 0 0 r 48

D , r b85S r 18 0 0 0

0 r 28 0 0

0 0 r 3 0

0 0 0 r 4

D .

~5.3!

As explained above, we now open the left waveguid
and block the right ones by means of perfect reflectors
that

tb5tb85S I 2 02

02 02
D , r b5r b85S 02 02

02 2I 2
D , ~5.4!

where I 2 and 02 denote the two-dimensional unit and ze
matrices, respectively.

The 434 matrix S0 has the structure~2.31!, i.e.,

S05S r 0 t0

t0 r 0
D , ~5.5!

wherer 0 and t0 are two-dimensional matrices. The matrixS
of Eq. ~5.1! then reads

S5S r 02t0

1

I 21r 0
t0 0

0 2I 2

D . ~5.6!

The 1-1 block of the above expression is the 232 scat-
tering matrix of the final system consisting of a LR
symmetric ballistic cavity connected to two waveguides
the left ~see Fig. 7!, i.e.,

s5r 02t0

1

I 21r 0
t0 . ~5.7!

Using the result~2.35! we can expressr 0 and t0 as

r 05
1

2
@s(1)1s(2)#, ~5.8!

t05
1

2
@s(1)2s(2)#, ~5.9!
01620
s
o

n

wheres(6) are 232 unitary and symmetric matrices.
A numerical calculation was performed, in which fou

dimensionalS0 matrices were generated with a distributio
corresponding to their invariant measure: this was done
constructing an ensemble ofs(6) matrices, Eqs.~5.8!, ~5.9!,
distributed as two independent COE’s. From Eq.~5.7!, the
resultingS matrices were then evaluated.

The distribution of the resulting transmission coefficienT
is shown in Fig. 8. For comparison, the distribution 1/2AT
corresponding to an AS cavity connected to two one-chan
waveguides and witĥS&50 is shown with a dotted line
Although the LR-symmetric cavity with external symmet
breaking has aT distribution very close to 1/2AT, there is a
statistically significant deviation which indicates that the
sulting system has a memory of the point symmetry of
cavity. This is to be contrasted with the result mentioned j
before Eq.~4.27! for the single one-channel cavity illustrate
in Fig. 4.

VI. RESULTS AND CONCLUSIONS

One of the main purposes of the present paper has b
the extension of previous studies on transport through ba
tic chaotic cavities with reflection symmetry to include th
presence of direct processes. In Sec. III we treated the p
lem of fully left-right (LR)-symmetric systemsin the presence
of direct processes and for the time-reversal invariant~TRI!

FIG. 7. A ballistic chaotic cavity connected to two asymmet
cally located waveguides, without direct processes. The distribu
of the two-dimensionalSmatrix isnot the invariant measure, but i
close to it.

FIG. 8. T distribution for a LR-symmetric cavity connected t
two asymmetrically located waveguides. The dotted line corresp
to an AS cavity connected to two waveguides.
5-10
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case. The statistical distribution of theS matrix, found ana-
lytically in Eq. ~3.6!, consists of the product of two Poisso
kernels with the optical matriceŝs(1)& and ^s(2)&, respec-
tively. For no direct transmission processes,^t&50, and real
direct reflectionŝ r &, we calculated analytically the distribu
tion of the transmission coefficientw(T) for the one-channe
case. The difference with theT distribution for an asymmet
ric cavity ~AC! with the same optical matrix̂S&, which is
large for ^r &50, becomes less dramatic asu^r &u increases:
that evolution is shown in Fig. 2.

The case of a full LR-symmetric system with the TR
symmetry broken by a magnetic field is not addressed h
Reference@5# finds that the correspondingS matrix has a
structure similar to that for theb51 case but with the roles
of r andt interchanged. The statistical distributionw(T) of T
for ^r &50 is given by 1/2A12T, indicating coherent for-
ward scattering. Starting from that distribution,w(T) would
evolve towardsd(T) as u^r &u increases.

The other main purpose of this work has been the stud
LR symmetry breaking by an asymmetric coupling of a L
symmetric cavity to the outside. Two ways of producing e
ternal mixing of the spatial symmetry were analyzed:

~a! In Sec. IV we studied the effect ofbreaking the re-
flection symmetry of a cavity by direct processes. The system
consists of a ballistic cavity with reflection symmetry co
nected to two symmetrically positioned waveguides
means of barriers which, in general, are allowed to be dif
ent ~Fig. 3!. We found analytically, in Eqs.~4.23! and~4.24!,
the statistical distribution of theSmatrix for the one-channe
case in each waveguide and, for simplicity, when only
barrier in the right-hand waveguide is present (r 28Þ0). The
T distribution is very different from that for the fully AS cas
~i.e., the one in which the cavity itself is AS! having the
same optical̂ S& matrix, as shown in Fig. 5 for various va
ues ofr 28Þ0. We conclude that this two-waveguide syste
although asymmetric with respect to the LR operation,has a
memory of the reflection symmetry of the cavityfrom which
it is constructed. In the limitr 28→21 the right-hand wave-
guide is blocked and we end up with a LR-symmetric bal
tic cavity connected, without any barrier, to just one lea
supporting one open channel~see Fig. 4!. We found that the
resulting one-dimensional matrixS5eiu is distributed ac-
cording to its invariant measure~i.e., u is uniformly distrib-
uted! and, as a result,there is no effect left of the LR sym
metry of the cavity: this was found, though, to be
peculiarity of the one-waveguide–one-channel case~in fact,
see the end of the next paragraph!.

~b! In Sec. V we studied,in the absence of direct pro
cesses, the effect of external mixing of LR symmetry indu
by an asymmetric position of the waveguides. The result is a
LR-symmetric cavity connected, without any barriers, to t
waveguides on its left-hand side~see Fig. 7!. Let T denote
the total transmission coefficient between those t
waveguides; its distributionw(T) was calculated numeri
cally for the one-channel case in each waveguide and c
pared, in Fig. 8, with 1/2AT, theT distribution arising from
the invariant measuredm (b51)(S) for AS systems. Although
the difference between the two distributions is quite smal
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is statistically significant. This problem is clearly equivale
to having, on one side of the cavity, just one wavegu
~coupled to the cavity without any barrier! supporting two
open channels. In this one-waveguide–two-channel prob
the resultingS matrix is thus distributed very closely to it
invariant measure, the difference exhibitingsome memory
left of the reflection symmetry of the cavity.

Two additional points are worth mentioning. First, fro
an experimental point of view, we note that microwave ca
ties and acoustic systems might represent good systems
which to study the interplay between the symmetry of t
cavity and external mixing in the statistical distribution
the conductance of such a structure. Finally, the prob
described in b above is relevant to the study of transp
between two one-channel leads connected by a ‘‘doub
Cayley tree@22#. In fact, under suitable circumstances t
two problems can be mapped unto each other. This prob
will be reported on elsewhere.
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APPENDIX A: DERIVATION OF EQ. „2.29…

We saw in Sec. II A 2 that the distributiondP^S&(S) of the
scattering matrix of a cavity connected to two waveguid
where the one on the right of the cavity has a barrier, is giv
by

dP0,r
28
~S!5

~12ur 28u
2!3/2

u12A12te2icr 28* u3

dt

2At

df

2p

dc

2p
. ~A1!

To see the behavior ofdP0,r
28
(S) for r 28521, let r 28 be a

real number: assume for simplicityr 2852cose ; we are in-
terested in the limite→0. Also, let us introduce the positiv
parameterh!1 in order to avoid the singularity att50. Of
course, we will take the limith→0 later on. Because the
variablef is uniformly distributed, the joint probability den
sity of t andc can be written as

ph,e~t,c!5
Ch

4pAt1h2

usineu3

u11coseA12te2icu3
, ~A2!

where Ch is a normalization constant that depends on
parameterh.

We have the following properties ofph,e(t,c).
~1! From ~A2! we see that

p0,0~t,c!5 lim
h→0

lim
e→0

ph,e~t,c!50 ~A3!

for all t and c, except fort50 andc5p/2,3p/2, where
the denominator is zero:

u11A12te2icu350. ~A4!

~2! For t50 andc5p/2,3p/2 we have
5-11
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p0,0S t50,c5
p

2
,3

p

2 D5 lim
h→0

lim
e→0

ph,eS t50,c5
p

2
,3

p

2 D
5 lim

h→0
lim
e→0

Ch

4ph Ucot
e

2U
3

→`.

~A5!

~3! The functionp0,0(t,c) is normalized to unity:

E
0

1

dtE
0

2p

dcp0,0~t,c!5 lim
h,e→0

E
0

1

dtE
0

2p

dcph,e~t,c!51.

~A6!

Then the only function which satisfies those conditions

p0,0~t,c!5d~t!
1

2 FdS c2
p

2 D1dS c2
3p

2 D G . ~A7!

Finally, the distribution of theSmatrix in the above limits is
given by Eq.~2.29!.

APPENDIX B: DERIVATION OF EQ. „3.11…

For ^r & real ands(6)5eiu(6)
, Eq. ~3.10! can be written as

dP̂^r &~S!5
12^r &2

u12^r &eiu(1)
u2

12^r &2

u12^r &eiu(2)
u2

du (1)

2p

du (2)

2p
.

~B1!

The transmission amplitude is given by@see Eq.~2.35!#

t5
1

2
~eiu(1)

2eiu(2)
!, ~B2!

and the transmission coefficient is written as

T5utu25
1

2
@12cos~u (1)2u (2)!#. ~B3!

The T distributionw^r &(T) is obtained from

w^r &~T!5E dH T2
1

2
@12cos~u (1)2u (2)!#J dP̂^r &~S!.

~B4!

In order to solve the integral, we make the change
variables

u5
1

2
@u (1)2u (2)#,

u85
1

2
@u (1)2u (2)#, ~B5!

the range of variation being: foru8P(0,2p), uP
(2u8,u8) and foru8P(p,2p), uP(22p1u8,2p2u8).

Substituting~B1! in ~B4!, considering the fact that th
integrand is an even function ofu and writing the delta func-
tion in terms of its roots in the variableu, we have
01620
s

f

d~T2sin2u!5
1

2AT~12T!
@d~u2u1!1d~u2u2!#,

~B6!

whereu25p2u1 andu15arcsinAT; finally, after some al-
gebra,w^r &(T) can be written as a sum of two terms:

w^r &~T!5
~12^r &2!2

p2AT~12T!
@ I 1~T,^r &!1I 2~T,^r &!#, ~B7!

where, fork51,2,

I k~T,^r &!5E
0

p

du8E
0

u8
du

1

@~11^r &2!22^r &cos~u81u!#

3
d~u2uk!

@~11^r &2!22^r &cos~u82u!#
. ~B8!

Again, after some algebra the sum of the two integrals giv
single one:

I 1~T,^r &!1I 2~T,^r &!5
1

cE0

p du8

a2bcosu81cos2u8
,

~B9!

where

a5
1

c
@~11^r &2!224^r &2T#,

b5
4

c
^r &~11^r &2!A12T,

c54^r &2. ~B10!

Now, making the change of variablex5cosu8, ~B7! can be
written as

w^r &~T!5
~12^r &2!2

4^r &2p2AT~12T!
@ I 1~T,^r &!1I 2~T,^r &!#,

~B11!

where now

I 6~T,^r &!5E
0

1 dx

A12x2~a6bx1x2!
. ~B12!

By means of a change of variables

u52
x1~A1B!

x1~A2B!
, ~B13a!

v52
x2~A1B!

x2~A2B!
, ~B13b!

where
5-12
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A5
1

b
~11a!, ~B14!

B5
1

b
A~11a!22b2, ~B15!

the indefinite integrals, Indef6 , corresponding to each one o
the above, can be transformed to

Indef15
2B

ACD
E uu11u

Au21p~u21q!
du, ~B16a!

Indef252
2B

ACD
E uv11u

Av21p~v21q!
dv, ~B16b!

where

p5
a2b~B1A!1~B1A!2

a1b~B2A!1~B2A!2
~B17!

q5
12~B1A!2

12~B2A!2
~B18!

and

C512~B2A!2,

D5a1b~B2A!1~B2A!2. ~B19!

Although the integrals~B12! seem to give the same resu
under the changeb→2b, they do not, because the cuto
xu5B2A in ~B16a!, andxv5A2B in ~B16b!, are different.
One must be careful when evaluating the integrals in
limits. The results are

I 1~T,^r &!5
2B

ACDAp2q
FarctanS 12^r &2

2^r &A12T
D

2
1

2Ap
lnS 11^r &212^r &AT

11^r &222^r &AT
D G , ~B20a!

I 2~T,^r &!5
2B

ACDAp2q
Fp2arctanS 12^r &2

2^r &A12T
D

1
1

2Ap
lnS 11^r &212^r &AT

11^r &222^r &AT
D G . ~B20b!

Now, we substitute the sum of equations~B20! in ~B11!
to obtain the result

w^r &~T!5
~12^r &2!2

4^r &2p2AT~12T!

2pB

ACDAp2q
; ~B21!

using Eqs.~B10!, ~B15!, ~B17!, ~B18!, and ~B19! the final
result ~3.11! is obtained.
01620
e

APPENDIX C: DERIVATION OF EQS. „4.23…,„4.24…

For the particular case in which barrier 1 is transpar
~see Fig. 3!, so that its scattering matrixS1 of Eq. ~2.12! is
the Pauli matrixsx , and barrier 2 is described by Eq.~2.13!
with real matrix elements, Eq.~4.22! can be written as

dP̂0,r
28
~S!;2

dS c02f02
p

2 D1dS c02f023
p

2 D
A12t0

3
~12r 28

2!3/2

u12A12tr 28e
2icu3

dt

2At

df

2p

dc

2p
. ~C1!

Also, the transformationS0(S) given by Eq.~4.3! can be
written in terms of its elements as follows:

r 05
1

12r 28r 8
@r ~12r 28r 8!1r 28t

2#,

r 085
1

12r 28r 8
~r 82r 28!,

t05
1

12r 28r 8
t2t, ~C2!

or in terms of the independent parameters@see Eqs.~2.20!
and ~4.5!# as

A12t0e2if05e2if
A12t2r 28e

2ic

12r 28A12te2ic
, ~C3a!

A12t0e2ic05e2ic
A12t2r 28e

22ic

12r 28A12te2ic
, ~C3b!

At0ei (f01c0)5
t2Atei (f1c)

12r 28A12te2ic
. ~C3c!

From ~C3a! or ~C3b! we find

A12t (0)5
uA12t2r 28e

2icu

u12A12tr 28e
2icu

; ~C4!

also, dividing~C3a! by ~C3b! we obtain

e2i (c02f0)5e2i (c2f)
A12t2r 28e

22ic

A12t2r 28e
2ic

. ~C5!

Because the roots of the delta functions appearing in
~4.22! satisfye2i (c02f0)521, from ~C5! we find

e2ic52e2ife2ia(f), ~C6!

where
5-13
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eia(f)5
A12t2r 28e

22if

uA12t2r 28e
2ifu

. ~C7!

Then, we have the conditions forc:

c2f2a~f!5
p

2
for c02f05

p

2

c2f2a~f!53
p

2
for c02f053

p

2
. ~C8!

The Jacobian for the transformationc0→c is

U ]

]c
~c02f0!U5 u~12t!2r 28

2u

uA12t2r 28e
22icu2

. ~C9!

Then we write

dS c02f02
2n11

2
p D5

uA12t2r 28e
22icu2

u~12t!2r 28
2u

3dFc2f2a~f!2
2n11

2
pG ,
~C10!

for n50,1.
From ~C6! and ~C7! we find

A12t2r 28e
2ic5

~12t!2r 28
2

A12t2r 28e
2if

, ~C11!

12r 28A12te2ic5
A12t~12r 28

2!2r 28te2if

A12tr 28e
2if

. ~C12!

Finally, substituting Eqs.~C4!, ~C10!, ~C11!, and ~C12! in
Eq. ~C1!, we arrive at

dP̂0,r
28
~t,f,c!;pr

28
~t,f,c!dt df dc, ~C13!

wherepr
28
(t,f,c) is given by Eq.~4.24!.

APPENDIX D: DERIVATION OF EQ. „4.26…

In Sec. IV we find the joint distribution oft, f, andc
@Eq. ~4.24!#. It is easy to integrate that distribution overc to
find the joint distribution oft andf as

qr
28
~t,f!5

~12r 28
2!3/2uA12t2r 28e

2ifu

~2p!2AtuA12t~12r 28
2!2r 28te2ifu2

.

~D1!

As in Appendix A, we assume for simplicityr 28
52cose; again we introduce the parameterh!1. Of
course, we will take the limitsh, e→0; then
01620
qh,e~t,f!5
Ch

2p2

usineu3

At1h2

uA12t1cosee2ifu

uA12t sin2e1t cosee2ifu2
.

~D2!

whereCh is a normalization constant that depends onh.
Again, as before, we have the following properties f

qh,e(t,f):
~1! From ~D2! we see that

q0,0~t,f!5 lim
h→0

lim
e→0

qh,e~t,f!50 ~D3!

for all t and f, except fort50 andf5p/2,3p/2, where
the denominatror is zero:

uA12t sin2e1t cosee2ifu250. ~D4!

~2! tÞ0 and;f.
It is easy to see from~D2! that in this case

q0,0~tÞ0,f!5 lim
h

lim
e→0

qh,e~t,f!50. ~D5!

~3! For t50 andf5p/2,3p/2 we have

q0,0S t50,f5
p

2
,3

p

2 D5 lim
h→0

lim
e→0

qh,eS t50,f5
p

2
,3

p

2 D
5 lim

h→0
lim
e→0

Ch

2p2h
Utan

e

2U50. ~D6!

~4! For t50,fÞp/2,3p/2 we obtain

q0,0S t50,fÞ
p

2
,3

p

2 D5 lim
h→0

lim
e→0

qh,eS t50,fÞ
p

2
,3

p

2 D
5 lim

h→0
lim
e→0

Ch

2p2h

u11cosee2ifu
usineu

→`. ~D7!

~5! Also, the functionq0,0(t,f) is normalized to unity:

E
0

1

dtE
0

2p

q0,0~t,f!5 lim
h,e→0

E
0

1

dtE
0

2p

qh,e~t,f!

3dt df51. ~D8!

These conditions define the function

q0,0~t,f!5d~t!
1

2p
. ~D9!

We thus arrive at Eq.~4.26!.
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