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We extend previous studies on transport through ballistic chaotic cavities with spatial lefttiRyhteflec-
tion symmetry to include the presence of direct processes. We first analyze fully LR-symmetric systems in the
presence of direct processes and compare the distribwi{@) of the transmission coefficieft with that for
an asymmetric cavity with the same “optical matrix. We then study the problem of “external mixing” of
the symmetry caused by an asymmetric coupling of the cavity to the outside. We first consider the case where
symmetry breaking arises because two symmetrically positioned waveguides are coupled to the cavity by
means of asymmetric tunnel barriers. Although this system is asymmetric with respect to the LR operation,
there is an effect of the symmetry of the cavity it was constructed from. Second, we break LR symmetry in the
absence of direct processes by asymmetrically positioning the two waveguides and compare the results with
those for the completely asymmetric case.
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I. INTRODUCTION that connect the cavity to the outside.
One purpose of the present paper is to extend the study of

The problem of chaotic wave scattering is of great interesRefs.[4] and[5] to include the presence of direct processes.
in various branches of physics, such as optics, nuclear, maVe consider two-dimensional systems with spinless particles
soscopic, and microwave physics. The study of quantumand concentrate on left-righitR) symmetry only, i.e., sym-
mechanical scattering problems whose classical dynamics [getry under reflection through an axis perpendicular to the
chaotic has been further motivated by recent experiments oftfént. We also restrict the analysis to time-reversal-
quantum-electronic transport in microstructures consisting of?variant (TRI) problems. One particular way of inducing
a cavity connected to leadd]. We know that symmetries direct reﬂectlons is _by adding potgntlal barriers .between the
have very interesting effects on the properties of the e|ectri§ymmetr|cally positioned waveguidaad the cavity. If the

conductance in mesoscopic systems: time-reversal and spi[‘\ﬁ/0 barriers are equal, the system is fully LR symmetric; if

rotational symmetrieg2,3], as well as spatial-reflection sym- coeu ?garfgsmar;eet?igfaﬁ{;gt,tfx eoﬁ?svige("i llj‘gl;symg]?;rr'coﬁag'fty
metries[4,5] have been studied in the literature. P y X g jarg

The pro_blem p_f ek_actronic transport thr_oygh asymmetricglrj:;i?r:gpgfl‘%s;(tgr]ﬁ;\llersi?(ﬁlllgrﬁfa;ittﬁ t:rl]s éﬁ?ﬁoﬂ??’nﬂgﬁg_
(AS) chaotic cavities is addressed in detail in Rl in an  x; interesting question, amenable to experimental observa-
mdepeln.dent-el'ectron approximation. In that reference, thﬁon, is that of the interplay between the symmetry of the
possibility of direct processes due to the presence of shogayity and external mixing in the statistical distribution of
paths is accounted for by specifying the average, or optal, the conductance of such a structure: the study of that inter-
matrix <S> within an information-theoretic approach. The p|ay is the second main purpose of this paper. From an ex-
statistical distribution for th& matrix is known as Poisson’s perimental point of view, microwave caviti¢8] and acous-
kernel, in which(S) is a parameter. Whe(5) =0, i.e., inthe tic systemg9] might represent good candidates by which to
absence of direct processes, the statistical distribution restudy these guestions.
duces to the invariant measure for the appropriate universal- That interplay may also be there and have interesting ef-
ity class. fects when(S)=0, as in the case of a LR-symmetric cavity
Microstructures with reflection symmetry and a chaoticcoupled to the outside by two waveguides free of potential
classical dynamics are studied in Refd] and [5]. The barriers butasymetrically locatedThis problem can be ad-
analysis is performed in the absence of direct processes, sliessed from the point of view of the systems described in
that the statistical distribution of ti&@matrix is the invariant the preceding paragraph in the following way. One may
measure for the universality class in question and the relthink of a LR-symmetric cavity coupled to the outside by
evant spatial symmetry: the latter is a symmetry of illé  four waveguides, also placed symmetrically. We can break
system under consideration, i.e., the cavity plus the two leadthe symmetry by providing the two waveguides on the right-
hand side of the cavity, say, with identical barriers. The de-
sired problem is then approached in the limit of impenetrable
*Also at Instituto de [ica, Universidad Nacional Autema de  barriers.
México, 01000 Meico DF, Mexico. This paper is organized as follows. In order to make the
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M From theS matrix we can construct the total transmission
coefficient, orspinless dimensionless conductance

S, T=tr(tt"), (2.2
which is proportional to the conductance of the cavity,
G=(2e?/h)T, (2.3

the factor 2 arising from the two spin directions.
In Dyson’s schemg11] there are three basic symmetry

FIG. 1. A ballistic chaotic cavity with scattering matrix given by classes. In the absence of anv symmetrv. the onlv restriction
Sy connected to two waveguides by means of two barriers with ' y sy ry, y

scattering matrice§; andsS,. on Sis unitarity, I.e.,

SS=l, (2.4
paper reasonably self-contained, we summarize in the next
section a number of concepts that we shall be using throughresulting from the physical requirement of flux conservation.
out the paper, such as the invariant measure and Poissorf$is is the “unitary” case, also designated #s=2. For
kernel forS matrices and their application to chaotic scatter-orthogonal symmetry, o8=1, Sis symmetric, i.e.,
ing in AS cavities, and the invariant measure for LR-
symmetric systems. Section Il deals with the problem of s=s', (2.5
fully LR-symmetric systems in the presence of direct pro-
cesses. The distribution of the conductance is calculated fd¥ecause one has either time-reversal invariafidel) and
the particular case of one open channel in each lead andigtegral spin, or TRI, half-integral spin and rotational sym-
diagonal optical matrix(implying direct reflections and  metry. In the “symplectic” case §=4), Sis self-dual be-
contrasted with the one obtained for an AS chaotic cavitycause of TRI with half-integral spin and no rotational sym-
and the same optical matrg). Different barriers added to Metry. From now on we consider the scattering problem of
the two waveguides of an otherwise fully LR-symmetric sys- SPinless” electrons, so that the casg=4 will not be
tem with no direct processes give rise to direct reflectiongouched upon.
and external mixing: the problem is studied in Sec. IvV. A convenient parametrization of tf®matrix is the polar
Again, the conductance distribution is computed for the onef€presentation12,13)
channel case and contrasted with the one obtained for an AS
chaotic cavity with the same optical mat(i®). The problem v O|[=V1-7 1 |/vsg
of external mixing in a LR-symmetric cavity with asymetri- Jr Ji—-7/\0
cally positioned leads an@lS)=0 is addressed in Sec. V.
The conductance distribution is calculated and comparedihere  stands for theN-dimensional diagonal matrix of
with the one arising from the invariant measure in the ASeigenvaluest, (a=1,... N) of the Hermitian matrix
case. Finally, for the sake of completeness, we include a&'; v, (i=1,...,4) arearbitrary NXN unitary matrices
number of appendices where some of the results mentiongdr 3=2, with the restricti0m3=v1, U4=v; for p=1.
in the text are derived.

0
), (2.6)
Ug

0 Uo

1. The invariant measure

II. THE S MATRIX AND ITS STATISTICAL When the classical dynamics of the system is chaotic, a
DISTRIBUTION statistical analysis of the quantum-mechanical problem is
called for. That analysis is performed in terms of “en-
A. The scattering problem in the absence of spatial sembles” of physical systems, described mathematically by
symmetries an ensemble o matrices, endowed with a probability mea-

A single-electron scattering problem can be described bypure. The starting point of such an analysis is the concept of
the scattering matrix§, which in the stationary case relates Invariant measurewhich is a precise formulation of the in-
the outgoing-wave to the incoming-wave amplitjd€§  tuitive notion ofequal a priori probabilitiesin the space of
For a ballistic cavity connected to two leads, each with ~Scattering matrices.
transverse propagating modésee Fig. 1, the S matrix is The invariant measure, to be designatecias®)(s), is
n=2N dimensional and has the structure invariant under the symmetry operation relevant to the uni-

versality class under consideratiphl,14], i.e.,

S=

r t’
) r,). 2.9 du®(S)=du®(USVy). 2.7

Here,Uq,V, are arbitrary but fixed unitary matrices in the
wherer, r’ are theNx N reflection matricesfor incidence  unitary case, whilé/q=U{ in the orthogonal one. Equation
from either leadl andt, t’ the corresponding transmission (2.7) defines the circularorthogonal, unitary ensembles
matrices. (COE, CUBH, for B=1,2, respectively.
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2. Chaotic scattering by AS cavities

1 1
_ +
The information-theoretic approach of Ref$5,16 leads S0_,{_,(S_rb)I —rTStb' (215
to the probability distribution known as Poisson’s kernel b b
[6,14]: One can prov¢l4,16,19,20that between the invariant mea-
s [det _<S><S>T)](ﬁn+2_ﬁ)/2d ors sures forS, and forSwe have the Jacobian
SO etz s S 4B LU (S(GNIET2 A2 )
(28) s (SO)_ |de(|_s<s>‘r)|ﬁn+2—ﬁ H ( )
where the invariant measure is assumed normalized, i.e., (2.19
Now, if the matrixS, for the cavity is distributed according
J du®(S)=1. (2.9  to the invariant measure, i.alu()(S;), the distribution of
the transformedb satisfies
Here,n= 2N is the dimensionality of th& matrix and(S) is dP(S)=du® 21
the averaged, owoptical, S matrix, which describes the (5)=dpn™(S) 219
prompt response arising frodirect processes and we obtain Eq(2.8), the opticalS being given by the
In the absence of direct processéS)=0 and Poisson’s p-dimensional matrix
measurdEqg. (2.8)] reduces to the invariant measure for the
universality class in question. In terms of the polar represen- rq
tation, the invariant measure can be writter| 58,18 (§)=rp= o 1l (2.1
2
du®(S)=pPUMII drll du(v). (2.10 The N=1, B=1 case. The T distributionNVe now con-
a i sider the distribution of th& matrix for the system shown in

o B ] ) Fig. 1 for the cas&N=1 andB=1. The matricess, of the
Here, the joint probability density dfr} is ballistic cavity,S; and S, of the two tunnel barriers, an8
[related through Eq2.15] are 2x2 and have the structure
p(ﬁ)({T}):CﬁH | 70— 7.b|ﬁl'[ G P B \{vith t’=t. In the polar representatiof2.6) we hav_e
a<b c three independent parametets ¢, , where we have writ-

_ o _ tenv,=€e'?, v,=€e'’. The range of variation of these pa-
Cj being a normalization constant adg.(v;) denoting the  gmeters is taken to be
invariant measure on the unitary grolf{N) for matrices
vj. 7€[0,1],
For (S)#0, a useful construction of Poisson’s ensemble (2.19
is given in Refs[19,2(. Consider the system shown in Fig. b, e[0,2m].
1: it consists of a cavity described by thalimensional scat-
tering matrixS,, connected to two leads by the tunnel bar-In terms of(2.19, Scan be written as

riers described by thaXn scattering matrices _ _
_ /1_7-62|¢ Te|(¢+¢)

r t
/ S= = . 1, (2.2
sl=(;1 :1) (2.12 t f’) Jreoro  (T=gee| 320
vt and the invariant measure of Eq2.10 and(2.11) as
ro té)
= (tz r du(s)= 20727 2n (2.29

respectively. We bunch the two leads into a “superlead” and

construct the BX 2n scattering matrixS, The distribution ofS is given by Poisson’s kernel, with

the opticalS matrix

r, 0 t; O
) , ri O
ty Iy t, 0 r; O
0 t. 0 r Substituting(S) in Eq. (2.8), Poisson’s measure can be writ-
2 2 ten as

Here, the various blocksr§, etc) aren dimensional. The [(1—|r4|2)(1—|r32) ]2
scattering matrix§, for the cavity can be written in terms of (S)= ! 2 du(S).
the scattering matrixS for the full system {cavity 1t [(L=rrf)(L—r'ry*)—t2rfry*|3
+barrierg as (2.23
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By definition, the resulting distribution of the transmission coefficiEmian be expressed as the integral
W, (M= [ 8T=7dP, (9. (2.24

For this distribution, Ref{6] gives the expression

1
(e [ry [ VI=T) (e "+ V1I=T)=|r I3 TP/ -

1
er,ré(T):ﬁ[(l_|r1|2)(l_|ré|2)]3/2< (2.295

where(- - -), , denotes an average over the variahjeand ~ We first notice that the angular variabjeis uniformly dis-
& over the interva[ 0,27r]. Whenr,=r;=0, the above ex- tributed for all r;. In this particular case th& probability

pression(2.25 reduces to density of Eq.(2.295 can be integrated analytically, to give
(6]
3 1 (1—|I’é|2)3/2 s
WooT)= _Zﬁ' (2.26 Wo,(T)= TZF1[3/2;3/2;11r2| (1-T)1,
(2.28
as it should. Figure 2 belowSec. Il sh9ws with dotted  F . peing a hypergeometric functidd].
lines the evolution ofw, /(T) for ry=r;=(r) with the As a check, we consider two limiting situations. First, for
parameterr), obtained from Eq(2.25 by numerical inte- r;=0 we have a ballistic cavity without prompt response.
gration. That distribution tends t§(T) as({r)——1. The probability distribution folS dPg S) [see Eq(2.27],

To further illustrate the physics resulting from the goes back to the invariant measuge21), as it should. Sec-
S matrix distribution(2.23 we analyze the special case  ond, we obstruct the right lead by making the barrier there a
=0, so that the right barrier is the only one present. For thigerfect reflector. As a result,=—1 and it can be shown
case, Egs(2.23 and (2.21) give, for the joint probability (see Appendix AthatdP,, (S) reduces to
distribution of the parameters ¢, s, the expression 2

do 1 T T
dPy_1(S)=4(7)d {5( (//—E +5< ¢—3E”dw,

el
(1-]r3»%  dr dg dy 2m 2

’ = - 22
APory(9)= 11 et 2ys 2m 2 (2.29
(2.27 where the angles in the arguments of the delta functions are
defined modulo zr. We see from the above expression that
o @ o ® the distribution ofr is a one-sided delta function at zero, i.e.,

8 w(T)=0o(T), (2.30

so that the transmission tends to zero, as expected. Also, the
distribution of ¢ consists of delta functions centered7a2
J and 3m/2, so as to ensure the vanishing of the wave function
08 10 at the impenetrable barrier. In contrast, as already noted, the
@ variable ¢ is uniformly distributed from 0 to 2. In this
10 limiting case we end up with a ballistic cavity connected to
just one lead: thughe resulting one-dimensional S matrix r
=—e?? is distributed according to the invariant measure
Now we go back to the intermediate case in whighn
L Eq. (2.28 is real and—1<r,<0. We show in Fig. 5 below
(Sec. IV) with dotted lines the evolution of thE distribution
002 04 06 08 1000 02 04 06 08 10 {5 several values of, obtained from the analytical result
FIG. 2. Shown with a heavy line is the evolution of the distri- (2:28.
butionw,,,(T) of Eq. (3.11) with the paramete(r)=—cose for a
chaotic cavity with full LR symmetry. Cases e

SO ON AN

]
1.

B. The scattering problem for TRI, LR-symmetric systems

=7/2,714,718,7132 are shown in(a),(b),(c),(d), respectively. The In the presence of additional symmetries, for fixed values
dotted lines show for comparison tAedistribution corresponding for all quantum numbers of the full symmetry group the
to an AS cavity with two identical barriers. invariant ensemble is one of the three circular ensembles in
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Dyson’s scheme. Thus for reflection-symmetric syst&vs

PHYSICAL REVIEW E 63 016205

one-channel caséN(=1) arising from the invariant measure

block diagonal in a basis of definite parity with respect to(2.36) as

reflections, with a circular ensemble in each bl¢4l5].

For a system with TRI and LR symmetry the general form

of the S matrix is

rot
(7 1), -
with
r=r’ (2.32a
t=t". (2.32b

All the matrices with the structur€.31) can be simulta-

neoulsy brought to block-diagonal form using the rotation

matrix
2l
Roy=—%= , (2.33
AR MY
wherel is the N-dimensional unit matrix. In fact,
st 0
’ 1)
S'=RiSR)= 0 <O (2.39
with
s(F)=r=+t. (2.35

Since S is unitary and symmetric, so a® and the twoN
X N matricess(™). While S has the restricted forni2.32),
s(*) are themost general &N unitary and symmetrid.e.,
B=1, matrices.

1. The invariant measure

The invariant measure fo8 matrices with the structure
(2.31) was found in Refs[4,5], based on the consideration

that two arbitrary unitary symmetric matrice5™) can gen-
erate the most general unita matrix with the structure
(2.31). The invariant measure for matrices of the fof2:31)
can be written as

dp () =du®(sH)du®(s(), (2.36

wheredu®(s(*)) is the invariant measure discussed above
for unitary and symmetric matrice@E& 1) in the absence of

spatial symmetries.

2. Chaotic scattering by systems with full LR symmetry
in the absence of direct processes

It has been found5] that single-electron scattering by
classically chaotic cavities with LR symmetry and in the
absence of direct processes is well described by the invariant

measure discussed above.
The N=1 case. The T distributiarReferencg4] finds the
distribution of the total transmission coefficieifit for the

w(T)= (2.37

1
mT(1-T)

IIl. SYSTEMS WITH TRI AND FULL LR SYMMETRY IN
THE PRESENCE OF DIRECT PROCESSES

In this section we study a TRI system with full LR sym-
metry, just as in Sec. Il B, but now admitting the possibility
of direct processes. For the systems analyzed in Sec. Il B, the
average(or optica) S matrix (S) vanishes, indicating the
absence of a prompt response, whereas (8- 0.

The S matrix has the structure of E¢R.31), and so does

(S), i.e.,
() <t>)
& o @
with
(ry=(n", (3.29
(=" (3.2b

being NXN blocks. BothS and (S) can be brought to a
block-diagonal form by the rotation matri2.33: Sbecomes
S’ of Eq. (2.34 and(S) becomes

(s)

(S')=Ro(S)Ry= 0 (s

. (3.3

As we noticed right below Eq2.35), s*) are themost
general NXN unitary and symmetrimatrices; they thus be-
long to the =1 universality class. Their distribution is
given by two statistically independent Poisson kernels of the
form (2.8), with (s{*)) as their optical matrices. Denoting by

dP(s(S) the Smatrix distribution, we have

dPs)(S)=dPs(+)y (st dPg-), (s, (3.4
where
dPg)y(s))
_{a(®) (£)\Ty7(N+1)/2
_ [detly—(s""){s"") )] ()
|det(y—sE) (st [N+ '
(3.9

We can thus writed Ps)(S) as
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[det(ly— <S(+)><S(+)>T)](N+1)/2 [detly— <S(—)><S(—)>T)](N+l)/2

o — eo)
TP et sHTE et s R ) 2o
|
whered)(S) is defined in Eq(2.36). The distribution(3.11) is plotted in Fig. 2 for several val-
The special case of no direct transmissitn=0, i.e., ues of(r) and compared, in the same figure, with the distri-
bution corresponding to an AS cavity with the sa(®, as
(ry O given by Eq.(2.25.
<S>=( 0 ()’ (3.7 For (r)=0, the distribution of Eq(3.11) reduces to that
of Eq. (2.37), which is symmetric with respect =3, so
can be written as thatT andR=1—T are identically distributed; this feature is
lost when(r)#0, as smallT’'s become more probable. As
[dely—(r){ryH N+t (ry——1, both distributions shown in the figur@e., for

dPy(S)= LR-symmetric and AS systemgend to 5(T).

|det(ly—s(ryh) N2 de(ly— s (r)h [N+

xdud)(s). (3.9 IV. BREAKING THE REFLECTION SYMMETRY OF
CAVITIES BY DIRECT PROCESSES
Physically, this case could be realized by fully LR- . . . . .
symmetric structures with no direct processes, to which iden- I this section we study a TRI configuration consisting of
tical barriers(with the =1 symmetry are added in the two & ballistic cavity with LR symmetry and scattering matrix

leads, each with a reflection matfisee Eq.(2.18)] So, connected to two symmetrically positioned waveguides
by means of barriers described By andS,, respectively; in
ro=ry=(r). (3.9  general, the barriers are allowed to be different. This ar-

rangement introduces direct reflections andreakdown of
The situation is illustrated in Fig. 3 ahead but with equalthe reflection symmetrisee Fig. 3. As a result, while the
barriers. scattering matrixs, of the cavity plus the symmetrically po-
sitioned waveguides, but not including the barriers, has the
restricted structurg2.31), (2.32), the scattering matri of

The N=1 case. TheT distribution. . . .
the total system including the barriers has the more general

In this case, Eq(3.8) reduces to form (2.1), (2.5. Now, Sis generated fron$, through the
.2 inverse of the relatior(2.19); thus, varyingS, across its

dI5<r>(S)= [1—(r)(r)*] dp(s), manifold of independent parameters, but keeping the barriers
|1— s (r)* 2| 1—s(r)* |2 fixed, generates a matri® that varies over a manifold with

(3.10  the same dimensionality. In what follows we restrict our-
selves to the one-channel casd=1) in each lead. The
where(r) ands(*) are now 1x 1 matrices, i.e., just complex matricesS, can be expressed in terms oo independent
numbers. The distribution of can be obtained from the continuous parametefplus a discrete parametet), as in
general expressiof2.24). For(r) real, some of the relevant Eq. (4.9 below, whileS has the more general for(2.20);

steps are found in Appendix B, the final result being thus there should be an algebraic relation connecting the
three continuous parameterse,y appearing in the latter
s (1+(r)?)(1—(r)?) equation.
w = ) _— . . .
(r) T(-T) (1+<r>2)2—4<r>2(1—T) We wantS, to be distributed according to the invariant

(3.11) measural .(V(S,). In principle, the transformation between
Sy andS (for fixed S; andS,) defines uniquely the resulting

S statistical distribution ofS, to be calleddP(S) [see Eq.
(4.21)]; for that purpose one could find the Jacobian of the
Sy S transformation relating to Sy, both matrices being subject
to the restrictions explained in the previous paragraph. In
what follows, though, we find it convenient to compute

dP(S) proceeding along a simpler route, taking advantage of
the Jacobian betweamrestricted Snatrices that we already

FIG. 3. A ballistic cavity with reflection symmetry described by know from Eq.(2.16. In fact, the measurduY(Sp) can be
the matrixS,, connected to two waveguides by means of two bar-first expressed as the measuare ™ (S;) of unrestricted §
riers described by, ,S,. The barriers give rise to direct processes matrices of the form of E¢(4.5) below times the appropriate
and, if they are different, the LR symmetry of the full system is delta functions that provide the required restrictisee Eq.
broken(external mixing. (4.6)] among the three parameters,dq,y. Next, Eq.
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(2.16 expressesluV(S,) in terms ofdu(M(S), the factor

in front of du(S) in Eq. (2.16 being the Jacobian of the

transformation from unrestricte§, to unrestrictedS matri-

ces. Finally, the identity4.21) gives the required distribution
dP(S) for the S matrices. We proceed to implement this .

scheme in detail.
The relationship between the scattering magjxfor the

cavity and the matriS for the full system is given by Eg.

(2.15, with

t, 0
tb:t{):( 0 tg), (41)

rp, O Co[re
M= 0 1) r,= 0 (4.2

0
ry)’

Here all the matrices are two-dimensional, so that the various

entries are just complex numbers. We thus have

1
soztgl(s—rb)l—th. 4.3

2_rbTS

The matrixShas the structur€.20, while S, has the struc-

ture (2.3)), i.e.,
o2 2

4.4
tg To 4.4

It will be useful to write Sy of Eq. (4.4) in the polar
representationi2.20) as

_ /1_7.062i¢o \/T—Oei(‘ﬁo‘*'%)
So= \/T_Oei(¢o+¢o) 1/1_7-092“#0 ' (4.9

However, the three parametets, ¢o, andi, are not inde-
pendent. In fact, the structure 8§ given in Eq.(4.4) implies
a relationship between the two anglég and ¢, i.e.,

e?Vo= —g?%o, (4.6
or, taking the square root on both sides
e'Yo=ige' %, 4.7
whereo=*1. Equivalently,
a
o= Po+ o5 mod 27). (4.9
The most general form d¥, is thus
_ \/1——7'0 o\ T 214
ia\/r—o \/1——70 e'%o, (4.9

written in terms of the independent parametegs ¢, and
the discrete variable, which have the range of variation

T0€[0,1], (4.109

PHYSICAL REVIEW E 63 016205

¢OE[0!27T]1 (410b

o==*1.

(4.100

From Egs.(2.33—(2.39, the matrixS, can be diagonal-
ized by aw/4 rotation to give

eigg+) 0
= S| (4.1
where
eifh = rotto=—e?%o=ioho (4.12
and
Bo=tan! i —zsﬁ <7 413
0 -7 2 7072

With the range of variatiof4.10) for 7o, ¢,, ando, € %"

) . ,
ande'% * covertwice the torus defined by the two angles
05", 6.

Equation(4.12 is a transformation from the parameters
To, ¢o, ando to the parameterég” ,08”, whose Jacobian
can be written as

}deg” deg’):E dro  déyo
2 27 27 2 gr(1-1) 27

Both sides of this last equation integrate to 1 if the left-hand
side is integrated in the regiaff,”), 6 e[0,27] and mul-
tiplied by 2 to account for the fact that the region is visited
twice, and the right-hand side is integrated in the region
specified by Eq(4.10.

According to Eq.(2.36), the left-hand side of Eq4.14
represents the invariant measure &y matrices with LR
symmetry. A functionf(7g,¢q,0) can be translated into a
functionf (6", 65 using the transformatiof#.12); its av-
erage over thé&, invariant measure can thus be written as

~de) ran dalo)
fz db fz dfe - Foe) 6l
0 21 0 2 0 70

(4.19

_E 1 dTO 277d¢0
2.2, IOWML 2 [ (70:$0.0)-
(4.15

Here, on the left-hand side we integrate over the torus
65),657) only once Suppose now that we are given a func-
tion F(7g,¢o,%0) =F ' (79,¢0,€'%0) of thethree parameters
appearing in Eq(4.5 and we want to compute its average
over the above measure. First, we make use of(Eq) to
eliminate ¢, and write

F(70,¢0,%0)=F'(70,¢0.,6'"0)=F'(7g,¢,ic€'%0)

=f(70,0,0)=F(65",657), (4.1
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wheref(rg,do,0) andT(65,657), have the same mean- invariant measureu*)(Sy) for scattering matrices; of the
ing as in Eq.(4.15 above. The average of this function can Mmore general forn(4.5). The relationship between the two

thus be written as it4.15 and subsequently as measures is thus
1 Jl d’TO JZW d¢0 . & T
5 F'(7q,¢q,ioe 216\ ho— o~ 5 |+ 6| ho— o~ 35
2.2 Jo i g lo 2w b (oo 7€) G (8~ 2 ?
\/1_ To
_1f1 dr f2ﬂd¢of2”d [5( 77) o
_2 me 0 271- 0 l/lo 1/10 d)o 2 Xdlu, (SO) (419)
- Here, the delta functions restrict the space of unitary and
+ 6| o— ¢O—35> F(70,¢0.%0), (4.177  symmetric matrices to the subspace of matrices of the form
4.9.

where we have used E(.8). Comparing the left hand-side As was %p'ai”‘?d at the beginr(lir;g of this section, we now
of Eq. (4.19 to the right-hand side of Eq4.17) we thus expressdu'~(Sp) in terms ofdu'(S) using Eq.(2.16.
That equation reads, for the present case,

write
m m [detl,—rpr))]*
~ — by — — ho—3— du®(Sg) = du®(S). (4.2
de(()+) dﬁg )~2[5< o= o 2 + 0| Yo— o 32” #(Sp) |de(|2—Srg)|3 u(S) (4.20
27 27 11—
70 We substitute this last equation into E¢4.19 and use Eq.
dro debo dio (2.21) to expressduV(S) in the polar representation. We
XTT—OE o (418 also note that the measudg.Y(S,) appearing on the left-

hand side of Eq(4.19), i.e., the differential probability asso-
where the symbob- indicates that the two measures areciated with the matrice$, [having the form(4.4)] for the
equivalent when the left- and right-hand sides are used t§R-symmetric cavity, must coincide with the differential
integrate the function$(6$",657) and F(7o,bo. o), re- probability dP; (S) we are looking for, associated with the
spectively, defined above. Obviously, the angles in the argutransformed matriceS [having the form(2.20), but with the
ment of the delta functions above are defined moduto &  appropriate restrictiodsi.e.,
we have already noticed, the left-hand side of EQ18) is . .
the invariant measureu.1)(S,) for scattering matriceS, of dP (S)=duM(Sy). (4.2
the form(4.11), i.e., for a LR-symmetric cavity. On the other
hand, Eq.(2.21) shows that the last line of E¢4.18 is the We thus have

ar a
5( Yo~ do E)”( ‘”0_"’0_35) [dell,—ryr) 132 dr de dy
1- 7 |det(1,—Sr)|® 247 27 27’

(4.22

It remains to express the variablég, ¢q, 79 appearing in (1—réz)3/2| \/E_réezuﬂ
the delta-function arguments in termsfe, 7. This is done P (7, b,h) = .

in Appendix C for the particular case in which barrier 1 is : (2m)> 1= r(1-ry?) —ryre”?|?
transparent, so that its scattering mat8ix of Eq. (2.12 is

the Pauli matrixo,, and barrier 2 is described by E@.13 X| 8| p—dp—a(d)— z)
with real matrix elements. The result is 2
o
+6 w—¢—a<¢>—35”, (4.24
dPo,;(S)~pry(7, 6, ¢)drdbdy, (4.23
a(¢) being given by Eq(C7). We recall that the angles in
with the arguments of the delta functions are defined moduio 2
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FIG. 4. A ballistic chaotic cavity with reflection symmetry con-

nected to just one lead, supporting one open channel, in the absenc

of direct processes. The one-dimensioBahatrix r = —e? ? is dis-
tributed according to the invariant measure.

As a first check, set;=0, corresponding to the case of
dr do 1

no barriers. We obtain
m {5( v )
mr(1—7) 27 2 2

+5(¢—¢—3g”d¢.

dPo o S)~

(4.295

PHYSICAL REVIEW E 63 016205

(a) (b)

06 08 1.0 8.0 02 04
T T

.0 02

0.4 06 08 1.0

FIG. 5. The solid line shows the evolution of thielistribution
obtained by numerical integration over of Eq. (4.27) for a LR-
symmetric cavity and one barrier defined idy= — cose, as a func-
tion of the parametek. Panels(a), (b), (c), (d) show casese
=ml2,7/4,718,7/32, respectively. The dotted lines show, for com-
parison, the distributions that correspond to an AS cavity and the
same barrier as for the corresponding heavy lines.

Thanks to the delta functions, we recover the situation of LR

symmetry. As expected, the right-hand side of E§25 is
the invariant measure defined for that symmetry, @dqL8.
As a second check, we analyze the case-—1, which

nally (i.e., for r;=0); that peak then “travels” toward3¥
=0 as|rj| increases. In the same figure we compare that
sequence of distributions with those corresponding to an AS

corresponds to obstructing the waveguide on the right. Wéavity (dotted lineg with the same; . In the former caséhe

show in Appendix D that Eq4.23 gives in this case

- do 1 T
dPO’_l(S)’V(S(T)dTEE 1) IJ/—E

T

+6| =35 |dy

(4.2

The conductance distribution reduces to a one-sided delta

function at zero, as it should. Notice that the variatslas
uniformly distributed in the two extreme case§=0 and
r,=—1; this is not so for an arbitrary value of.. In the
limiting caser,=—1 we end up with a LR-symmetric bal-
listic cavity connected to just one leddee Fig. 4 the re-
sulting one-dimensionas matrix, i.e.,r = —e??, is distrib-
uted according to thénvariant measurethere is thusno
effect left of the LR symmetry of the cavity fact, the right-
hand side of Eq(4.26 is identical to that of Sec. Il A 2, Eq.
(2.29, for an AS cavity with the right-hand waveguide ob-
structed. As we shall see later on, in Sec. V, this is a pec
liarity of the one-channel case.

To get the joint distribution of and ¢ for arbitraryr;, we
integrate Eq(4.24) over . We find

. 1 (1-r4?)°%? |V1—7—r,e??|
(1,)=— —
ary ¢ 272 Jr [V1—7(1=r52)—r,re??|?

(4.27
The T=17 distribution w(T) is obtained by integrating
qré(r, ¢) over ¢. Figure 5 showssolid lineg the evolution
of w(T) with the parameter;. The peak in the solid curve
in Fig. 5 seems to arise from the peak that iSatl origi-

system “remembers” in a rather conspicuous way that, al-
though the resulting configuration is asymmetric, the cavity
has LR symmetry

V. BREAKING THE REFLECTION SYMMETRY OF
CAVITIES WITH AN ASYMMETRIC POSITION
OF THE WAVEGUIDES

In the present section we study the effect of external mix-
ing of LR symmetry in the absence of direct processes, i.e.,
for (S)=0: the problem will be that of a LR-symmetric cav-
ity connected to two asymmetrically positioned waveguides
in the absence of barriers. We proceed as follows. We first
consider the LR-symmetric cavity connected to four sym-
metrically positioned waveguidésach supporting one open
channel by means of four, in general different, barriers, as
shown in Fig. 6. The two barriers on the left-hand side are
then removed, while those on the right are made perfect re-

uﬂectors.

We call Sy the matrix associated with the LR-symmetric

FIG. 6. A ballistic cavity connected to four waveguides sym-
metrically located, by means of four, in principle different, barriers.
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cavity connected to the four symmetrically located S
waveguides in the@bsenceof barriers. The matriXS in the
presence of the four barriers is then given by £919, i.e.,

1
S:rb"l'tl—SOtb, (51)
b|4_Sort,)
where
t, 0 0 O
t, 0 O FIG. 7. A ballistic chaotic cavity connected to two asymmetri-
ty=t,= (5.2 cally located waveguides, without direct processes. The distribution
0 0 t3 O of the two-dimensionab matrix is not the invariant measure, but is
0 0 0 t4 close to it.
r, 0 0 O rh 0 0 0 wheres™) are 2< 2 unitary and symmetric matrices.
0 0 0 1’ 0 A numerical calculation was performed, in which four-
M= 2 ; ri= 2 _ dimensionalS, matrices were generated with a distribution
rg O 0 rs 0 corresponding to their invariant measure: this was done by
r 0 0 0 1, constructing an ensemble sf) matrices, Eqs(5.8), (5.9),

(5.3 distributed as two independent COE’s. From E57), the
resultingS matrices were then evaluated.

As explained above, we now open the left waveguides The distribution of the resulting transmission coeffici&nt
and block the right ones by means of perfect reflectors, s¢s shown in Fig. 8. For comparison, the distribution T2
that corresponding to an AS cavity connected to two one-channel

waveguides and witfS)=0 is shown with a dotted line.
, (12 02 . (02 0 Although the LR-symmetric cavity with external symmetry
== 0, 0, Mo=lp= 0, —ly)’ (54 breaking has & distribution very close to 14ZT, there is a
statistically significant deviation which indicates that the re-
wherel, and Q, denote the two-dimensional unit and zero sulting system has a memory of the point symmetry of the

matrices, respectively. cavity. This is to be contrasted with the result mentioned just
The 4X4 matrix Sy has the structur€2.31), i.e., before Eq.(4.27) for the single one-channel cavity illustrated
in Fig. 4.
ro to
So=| , (5.9
o To VI. RESULTS AND CONCLUSIONS
wherer, andt, are two-dimensional matrices. The mat8x One of the main purposes of the present paper has been
of Eq. (5.1) then reads the extension of previous studies on transport through ballis-
tic chaotic cavities with reflection symmetry to include the
1 presence of direct processes. In Sec. Il we treated the prob-
o= Fo—toj 1o 0 (5.6 lem of fully left-right (LR)-symmetric systensthe presence
- 02 0 | ’ ) of direct processes and for the time-reversal invar{diil)
—I2
L 25000
The 1-1 block of the above expression is th& 2 scat- =
tering matrix of the final system consisting of a LR- 20000k
symmetric ballistic cavity connected to two waveguides on
the left (see Fig. 7, i.e., 15000 1
S :
=_f—tf— 2 10000} ‘=
S=Try t°I2+rot°' (5.7 .
) 5000 S
Using the resul{2.35 we can expressy andt, as T
0.0 02 04 06 08 10

1
rozi[s(*)Jrs(*)], (5.9
FIG. 8. T distribution for a LR-symmetric cavity connected to

t0=l[s(+) _ s(_)], (5.9 two asymmetrically located waveguides. The dotted line correspond
2 to an AS cavity connected to two waveguides.
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case. The statistical distribution of ti&ematrix, found ana- s statistically significant. This problem is clearly equivalent
lytically in Eg. (3.6), consists of the product of two Poisson to having, on one side of the cavity, just one waveguide
kernels with the optical matrices ™)) and(s(7)), respec- (coupled to the cavity without any barrjesupporting two
tively. For no direct transmission process@$=0, and real open channels. In this one-waveguide—two-channel problem
direct reflectiongr), we calculated analytically the distribu- the resultingS matrix is thus distributed very closely to its
tion of the transmission coefficiemt(T) for the one-channel invariant measure, the difference exhibitisgme memory
case. The difference with tHedistribution for an asymmet- 1€ft Of the reflection symmetry of the cavity

ric cavity (AC) with the same optical matrixS), which is Two a_dditional p_oints are worth mentionin_g. First, from
large for(r)=0, becomes less dramatic §8)| increases: an experimental point of view, we note that microwave cavi-
that evolution is’ shown in Fig. 2 " ties and acoustic systems might represent good systems with

The case of a full LR-symmetric system with the TRI which to study the interplay between the symmetry of the

P cavity and external mixing in the statistical distribution of
symmetry broken by a magnetic field is not addressed her y 9

. . ) e conductance of such a structure. Finally, the problem
Reference[5] finds that the corresponding matrix has @ jageribed in b above is relevant to the study of transport

structure similar to that for thg=1 case but with the roles parveen two one-channel leads connected by a “double”
of r andt interchanged. The statistical distributiaaf T) of T Cayley tree[22]. In fact, under suitable circumstances the
for (r)=0 is given by 1/2/1—-T, indicating coherent for- two problems can be mapped unto each other. This problem
ward scattering. Starting from that distributiom(T) would  will be reported on elsewhere.
evolve towardss(T) as|(r)| increases.

The other main purpose of this work has been the study of ACKNOWLEDGMENTS
LR symmetry breaking by an asymmetric coupling of a LR-
symmetric cavity to the outside. Two ways of producing ex- One of the authoréM.M.) wishes to acknowledge support

ternal mixing of the spatial symmetry were analyzed: by DGAPA-UNAM and by CONACYT, Meico.
(@) In Sec. IV we studied the effect difreaking the re-
flection symmetry of a cavity by direct processdse system APPENDIX A: DERIVATION OF EQ. (2.29

consists of a ballistic cavity with reflection symmetry con- . S

nected to two symmetrically positioned waveguides by e SawinSec.II'A2that the distributiatP(S) of the

means of barriers which, in general, are allowed to be differSCattering matrix of a cavity connected to two waveguides,

ent(Fig. 3. We found analytically, in Eq€4.23 and(4.24) where the one on the right of the cavity has a batrrier, is given

the statistical distribution of th& matrix for the one-channel by

case in each waveguide and, for simplicity, when only the 23/
- . o . (1—r3|%) dr d¢ dy

barrier in the right-hand waveguide is presenj#0). The dPy,(S)= 2 7

T distribution is very different from that for the fully AS case "2 |1—1—re¥r*|3 2{r 2w 2m

(i.e., the one in which the cavity itself is AShaving the

same optical S) matrix, as shown in Fig. 5 for various val- To see the behavior m‘PO,,é(S) forr,=—1, letr, be a

ues ofr,#0. We conclude that this two-waveguide system, eal number: assume for simplicity,= — cose; we are in-

although asymmetric with respect to the LR operatitas a  tgrested in the limie— 0. Also, let us introduce the positive
memory of the reflectlon_syn)metry of the cafiigm which  parameter;<1 in order to avoid the singularity at=0. Of
it is constructed. In the limit,— —1 the right-hand wave- cqoyrse, we will take the limity—0 later on. Because the

guide is blocked and we end up with a LR-symmetric ballis-yariable¢ is uniformly distributed, the joint probability den-
tic cavity connected, without any barrier, to just one leadsjty of 7 and s can be written as

supporting one open channgkee Fig. 4. We found that the

(A1)

resulting one-dimensional matrig=e'? is distributed ac- c, |sinel®
cording to its invariant measurge., 6 is uniformly distrib- P )= > 3 (A2)
uted and, as a resulthere is no effect left of the LR sym- 4m\7+5* |1+ cose1—re’|

metry of the cavity this was found, though, to be a
peculiarity of the one-waveguide—one-channel dasdact,
see the end of the next paragraph

(b) In Sec. V we studiedin the absence of direct pro-
cesses, the effect of external mixing of LR symmetry induced
by an asymmetric position of the waveguidEse result is a
LR-symmetric cavity connected, without any barriers, to two
waveguides on its left-hand sideee Fig. 7. Let T denote
the total transmission coefficient between those tWCfor all 7 and l//, except forr=0 and I//: 77/2,377/2, where
waveguides; its distributiorw(T) was calculated numeri- the denominator is zero:
cally for the one-channel case in each waveguide and com-
pared, in Fig. 8, with 1/2T, the T distribution arising from |1+ J1—re?’|3=0. (A4)
the invariant measuréw(#=1)(S) for AS systems. Although
the difference between the two distributions is quite small, it (2) For 7=0 and = 7/2,37/2 we have

where C,, is a normalization constant that depends on the
parametery.

We have the following properties @f, .(7,).

(1) From (A2) we see that

pO,O(Tilrb): lim lim pn,e(T!lr//):O (A3)

7n—0 €—0
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Po,o( =04= —.3—)= lim lim p ( 7=0,4= —,3—) S(T—siff)= ———[5(0—6,)+ 86— 6,)],
272 7—0 e—0 K 272 ( ) 2 T(l_T)[ ( l) ( 2)]
C 3 (BG)
—im | 7 €
- I|mo I'mo 4y cotyl —e. where 6,= 7— 6, and 6, =arcsin/T; finally, after some al-
7n—0 e—

gebra,w,,(T) can be written as a sum of two terms:

(1—(r)%)?
W<r>(T)=W[H(T,(W)HZ(T,(U)], (B7)

(A5)

(3) The functionpg o( 7, ) is normalized to unity:

1 27 1 2w
JdT . dypo o 7,40)= lim J dr . dip, (1,4)=1.

0 S where, fork=1,2,
(A6)
T ' 1
Then the only function which satisfies those conditions is Ik(T,<r>)=f de’ fo deé
0 0 [(1+{r)>)—2(r)cog '+ 6)]
A= 8(r) 5(¢ v 3”) (A7)
Pod 7 ¥)=8(7) 5 - = - 86— 6,
° 2 2 2 X ( J . (B8)
. o - o [(1+(r)?)—2(r)cog 6" - 6)]
Finally, the distribution of thes matrix in the above limits is
given by Eq.(2.29. Again, after some algebra the sum of the two integrals give a
single one:
APPENDIX B: DERIVATION OF EQ. (3.1)
. 1(n de’
For(r) real ands(*)=¢' ", Eq.(3.10 can be written as L (T )+ 1(T (r =—f ,
(r) q AT ) +15(T(r)) ¢Jo a—bcosd’ + codd’
) 1 (r)? 1-(r)2  do™) do) (B9)
dP)(S)= VSE 02 2 27
|1=(r)e'” |7 [1—(r)e'” 7|7 em om where
(B1)
1
The transmission amplitude is given psee Eq(2.35] a= E[(1+<r>2)2—4<r>2T],
t= 2 (@) -t (B2 4
2 b=—(r)(1+(r)*)V1-T,
and the transmission coefficient is written as
. c=4(r)2 (B10)
—|t12="211— (+) — g(=)
T=It 2[1 cog 6 1. (B3) Now, making the change of variable=cos#’, (B7) can be
written as
The T distributionw,(T) is obtained from
1 Wiy (T) = A ()" [ (TAr)+1(T(r))]
w<r>(T)=f 5[T—§[1—cos(0(+)—0())]]dl5<,>(8). O a2 T o
B11
(B4) (B11
In order to solve the integral, we make the change Ofwhere now
variables 1 d
(T <r>):J X . ®12
9:%[9“)_ 07, - 0 y1-x*(axbx+x?)
By means of a change of variables
1
o' ==[6")— o], (B5) X+ (A+B)
2 = v 7
4T X (A-B)’ (B133
the range of variation being: forf’ €(0,27), fe
(—¢',0") and for @’ e (m,2m), 0e(—27+6',27—0"). _ x=(A+B) B13h
Substituting(B1) in (B4), considering the fact that the v=- x—(A—B)’ ( )
integrand is an even function éfand writing the delta func-
tion in terms of its roots in the variablé, we have where

016205-12



ELECTRONIC TRANSPORT THROUGH BALLISTT . . .

A= %(1+a), (B14)
B=%J(1+a)2—b2, (B15)

the indefinite integrals, Indef, corresponding to each one of
the above, can be transformed to

Indef 28 Jut1] d (B163
naetr,. = u,
T Jco JuZ+p(u?+q)
Indef 2B P 4 (@16b
naer_ = — v,
JCD/J \v2+p(v?+q)
where
a—b(B+A)+(B+A)>?
= (B17)
a+b(B—A)+(B—A)?
1-(B+A)?
qQ=— (B1y)
1-(B—A)?
and
C=1-(B—A)?,
D=a+b(B—A)+(B—A)>2 (B19)

Although the integral$B12) seem to give the same result
under the change— —b, they do not, because the cutoff
xy,=B—An (B16g, andx,=A—B in (B16b), are different.

One must be careful when evaluating the integrals in the

limits. The results are

2B t’( 1—(r)?
eoyp—al 2T
1+<r>2+2<r>ﬁ)

1+(r)2=2(rT
1—(r)?

B
\/ED '_p—q 'n—arctar(—2<r> _1__'_
L 1+<r>2+z<r>ﬁ)
20p |1 (=2

Now, we substitute the sum of equatiof@20) in (B11)
to obtain the result

I+(T,<I’>)=

1
— n
2\p

2

. (B203

I (T(r)=

. (B20b

(1—(r)??2 27B
Kr)2m?\T(1-T) VCDp—q’

using Eqgs.(B10), (B15), (B17), (B18), and (B19) the final
result(3.11) is obtained.

Wi (T)= (B21)

PHYSICAL REVIEW E 63 016205

APPENDIX C: DERIVATION OF EQS. (4.23,(4.29

For the particular case in which barrier 1 is transparent
(see Fig. 3, so that its scattering matri®, of Eq. (2.12) is
the Pauli matrixo,, and barrier 2 is described by E@.13
with real matrix elements, Eq4.22) can be written as

n '
i 5( 'ﬂo‘d’o‘g +0 ¢o_¢o_3§>
dPo/(S)~2 =
(1-132%2  dr de dy

Vi me?ip 27 2m 2 (P

Also, the transformatior5y,(S) given by Eq.(4.3) can be
written in terms of its elements as follows:

ro= [r(1—ryr")+rjt?],

Iy !
1—ryr

ro_

(r'=ry),

!

1—-ryr

1

It
1-ror

tOZ tzt, (CZ)

or in terms of the independent parametgsse Eqgs(2.20
and(4.5] as

V1—7—r5e?

_ 2idp—2ip £
V1—T1pe'P0=¢ - = (C3a
. 1—r—rle v
_ iy — 21y 2
V1—r1pe'¥o=¢ —1—r§\/E62i"” (C3b
_ t,\/7ei(#+9)
(bot¥g) = <"~
o€ ($oT¥o i — (C30
From (C33 or (C3b) we find
o |V1—7—r,e?|
V1—7Y= — (Co
|1—V1—7re?|
also, dividing(C3a by (C3b) we obtain
1 ! a= 2
Q2o do)— gitu-p) V1T T28 (C5)

Vi-r—rye?t

Because the roots of the delta functions appearing in Eq.
(4.22) satisfye? (Yo~ ¢0)=—1, from (C5) we find
e2iz//: _ e2i¢:e2ia(d7), (CG)

where
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M1—F+—ypla=2i¢
gatp) V1T TE T 7
[V1—7—r,e??|
Then, we have the conditions far.
T r
y-p-—a(g)=7 for o= do=5
ar
—¢—a(¢)=3§ for — o= 3—. (C8)
The Jacobian for the transformatigiy— i is
9 [(1—7)—r5?] )
(w(lﬂo $o)| = VI r—rpe 292
Then we write
5(¢ ’ 2n+1 |[V1—7—rje 2¥?
0~ Po~ =
2 [(1—7)—r5?
2n+1
o p—d—ald)— w},
(C10
for n=0,1.
From (C6) and(C7) we find
) (1—7')—I’£2
Vi-7—rpedV=———— (1D
2 1—7—rje??
2
1= r(1-r})—ryred?
1—r5\1—re?¥= : . (C12
2 V1—7r5e??

Finally, substituting Eqs(C4), (C10), (C11), and(C12) in
Eqg. (C1), we arrive at

dPoy (7., ~pry(r, ,)d7dpdy,  (C13

Wherepré(q-,gb,w) is given by Eq.(4.24).

APPENDIX D: DERIVATION OF EQ. (4.26

In Sec. IV we find the joint distribution of, ¢, andy
[Eq. (4.29)]. It is easy to integrate that distribution ovgérto
find the joint distribution ofr and ¢ as

(1-1,2)31—r—r}e??|
VTNI=7(1=r;?) —ryre® |

"7, =
Uy(r )=
(D1)
As in Appendix A, we assume for simplicity

= —coSe; again we introduce the parameter<l. Of
course, we will take the limits;, e—0; then
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(7. 6)= C, Isinel® |\V1— 7+ cosee? ?|

AT, 5

A, 272 7+ 7% |J1—rsirfe+ rcosee? |2
(D2

whereC, is a normalization constant that dependsspn

Again, as before, we have the following properties for

Uy, (T, 9):
(1) From (D2) we see that

Qoo 7, ¢)=lim lim q, (7,¢)=0 (D3)

n—0 €—0

for all 7 and ¢, except forr=0 and ¢= 7/2,37/2, where
the denominatror is zero:

|\1— 7sirfe+ 7 cosee? ¢|2=0. (D4)
(2) 7#0 andV ¢.
It is easy to see froniD2) that in this case
Jo,o 7#0,¢)=lim lim q, (7,4)=0. (D5)

n €—0

(3) For 7=0 and ¢= 7/2,37/2 we have

T T . . T T
Joo 7= O¢_§ 5 35| =Ilim lim q, . T:0,¢:§,3§

n—0 €—0

lim i tan-|=0. (D6)
=1m Ilim anz| =0U.

7n—0 €—0 2’7T n 2

(4) For 7=0,¢# w/2,37/2 we obtain

qoo(r 0¢¢2 2)—Ilm lim q“(r 0¢¢23§)

7n—0 e—0

o |1+ cosee? ?|
=lim lim — -

70 -0 27N |sine|
—00, (D7)

(5) Also, the functiongg o 7, ¢) is normalized to unity:

Joldr fohqo,o(r, )= lim f dr fozwq,?,g )

7,6—0
xXdrd¢=1. (D8)
These conditions define the function
=0 ! D9
Qo 7.6)=38(7) 5. (D9)

We thus arrive at Eq4.26).
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